
Introduction

In recent years, the utilization of zkSNARKS has witnessed a significant upsurge in the 

blockchain space unlocking new possibilities for protecting users data, enhancing scala-

bility, and allowing interoperability.

zkSNARKs play a crucial role in enabling use cases where user data privacy is fundamental 

while engaging in decentralized applications. 

Taking a step backk, zkSNARKs are cryptographic proofs that enable one party (the 

prover) to convince another party (the verifier) that a certain statement is true without 

revealing any data involved in the statement itself. The 'zero-knowledge' property ensures 

that the proof does not disclose any additional information beyond the fact that the 

statement is true.

In the context of blockchain applications, zk-SNARKs can be adopted to enhance user 

data protection by allowing transactions to be verified without disclosing all the informa-

tion needed for the on-chain execution. More specifically the users no longer need to 

share their data because they can cryptographically prove statements about their data 

while keeping it private and just share the proof. For instance, this enables an on-chain 

smart contract to verify statements on users' data by validating the Zero Knowledge 

proof, eliminating the necessity to access the private data of users. The smart contract 

integrating such capabilities enables many use cases that would have been impossible to 

implement on public blockchains for privacy reasons.

Looking ahead, as the need for compliance with national regulations becomes more 

important, digital identity will assume a pivotal role in every transaction. Zero-knowledge 

proofs will play a crucial role in striking a balance between privacy and regulatory adher-

ence. This aligns with the evolving landscape of blockchain technology, where priva-

cy-preserving mechanisms like ZKPs are pivotal for ensuring secure transactions while 

upholding regulatory requirements.

Another important application of zkSNARKs is related to scalability. As partially mentioned 

above, in a more general sense, the SNARK proof can be seen as a succinct proof of com-

putation. For example, if the computation involves the execution of a VM (virtual ma-

chine), it is possible to generate a succinct proof of the VM's execution, including an 

Ethereum Virtual Machine (EVM). Zero-Knowledge Virtual Machines follow this approach, 

for instance, to enable the creation of trustless rollups leveraging zkSNARKs to prove 

statements to the Layer 1 chain about the rollup. This enables fully trustless, secure, and 

cryptographically proven communication channels.
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Furthermore, the fusion of zero-knowledge principles with Artificial Intelligence (AI) holds 

immense potential. It allows AI models to be employed without the need for on-chain 

execution. Instead, only the verification of the executed result occurs on-chain, reducing 

computational overhead while maintaining the integrity of the AI processes.

In such a scenario, it becomes necessary to design a system that can support an increas-

ing number of transactions using ZK proofs to be verified on-chain. For example, multiple 

concurrent users could submit their transactions, interacting with smart contracts featur-

ing privacy-preserving functions, and multiple rollups or ZK bridges could post their com-

munication proofs on the main chain. In this context, it's immediately evident that, even 

with proving systems with the fastest verification time, the straightforward approach of 

including all transactions along with their proofs in the block, and having each node verify 

all the proofs, quickly reaches the limits of block time and/or space budget.
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An approach that can address these challenges consists of constructing a system that 

leverages the advantages of efficient recursive proof composition. Recursive proof com-

position involves creating a new proof that encapsulates and verifies multiple existing 

proofs, reducing the verification cost and improving the scalability of a blockchain system 

supporting ZK-enabled transactions. 
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Building upon this concept, we present SNARKtor, a scalable and robust protocol for 

decentralized recursive proof aggregation. It allows aggregating many proofs for different  

transactions into a unique proof. The transactions can be totally unrelated (e.g. some 

transactions can use ZK for protecting user data privacy, some for compliance purposes, 

and others using ZK to validate a  zk-rollup state update). The resulting proof can be 

verified more efficiently having a constant verification time independent from the number 

of aggregated proofs. This not only enhances the scalability and efficiency of a block-

chain system but also makes it more feasible for use cases that require low latency, for 

example removing the need for expensive proof wrappings.

The SNARKtor protocol is designed to work in a decentralized environment where inde-

pendent actors can join and contribute to the recursive proof aggregation process. The 

protocol is constructed to create competition between provers in order to incentivize fair 

cost of proof generation. As the proof aggregation process requires the creation and 

dissemination of many intermediate proofs, the protocol also avoids expensive proof 

verification during broadcasting, furtherly improving the efficiency of the aggregation 

process.

In order to describe the flow, let’s take as an example an on-chain application that lever-

ages ZK proofs to protect users' data privacy. In such a scenario, in order to interact with 

the application, a user should provide a ZK proof along with the transaction. 
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High Level Scheme

In our model, the user instead of directly submitting the transaction with the proof, will 

first submit a request using the SNARKtor protocol to process the proof and then submit 

the transaction on chain referring to that proof. 

At a very high level, the SNARKtor protocol continuously processes proofs by aggregating 

them in a decentralized fashion and periodically submits an aggregated proof on chain. 

This aggregated proof confirms the validity of all users’ underlying proofs, allowing user 

transactions to indirectly prove to the on-chain smart contract the existence of a valid 

proof. 

This process can be made totally transparent to the user by implementing a well-de-

signed user interface.
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actors 

Looking more closely, we can identify the following actors participating in the protocol:

Users. 

Users submit requests for the ZK proofs they want to be aggregated. When the corre-

sponding ZK proof is aggregated and submitted on-chain, the user can submit a transac-

tion referring to the aggregated proof.

Schedulers. 

Special entities that coordinate the proof aggregation process. Specifically, their task is 

to maintain a sequence of proofs and provide a schedule defining who, how, and when 

make the computational work of merging proofs.

Provers. 

The actual workers who perform the task of merging proofs according to the schedule 

provided by schedulers.

Submitters. 

They submit final aggregated proofs on-chain. From the merging protocol perspective 

their task is to pick up an aggregated proof and include it into a block or submit to the 

smart contract (depending on the implementation).

It’s important to note that depending on the implementation, Schedulers and Submitters 

can be selected from the block producers set of the underlying chain in order to inherit its 

decentralization.



aggregation Flow

The protocol operates in an environment where time is divided into 

slots of constant duration.

• Users continuously submit their proofs augmenting the proofs queue.

• Every slot is assigned to a proof scheduler and at the beginning of each slot, the 

scheduler picks up a set of proofs from the proofs queue and issues a schedule defin-

ing which provers should merge what ZK proofs.

• Each assigned prover, merge the assigned proofs and share the resulting merged proof 

to the other network participants.

• The resulting merged proofs are added to the proofs queue and the relative source 

proofs are removed from it.

• The schedule loop continues infinitely.

In parallel to scheduling and merging, the submission process is responsible for picking up 

one of the merged proofs and submitting it on chain. More specifically the submission 

environment is divided into submission epochs. Depending on the implementation, the 

submission epoch can be bound for example to chain blocks or slots. 

• Each submission epoch is assigned to a specific submitter.

• The assigned submitter takes one aggregated proof, finalizes it for submission and 

submits it on-chain. The submitter is allowed (but not obliged) to submit exactly one 

proof per epoch.
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Rewards

The rewards are paid out from the collected fees coming from the users’ aggregation 

requests that are kept by the aggregation service. The on-chain component maintains a 

reward pool from which every actor can withdraw their rewards. Considering that a with-

drawal for every generated proof or issued schedule will be very expensive to be pro-

cessed on-chain, the protocol leverages SNARKs also to allow an actor to collectively 

withdraw many rewards with a single transaction.

For what regards incentives, distribution of fees between participants, the further scaling 

solution avoiding proofs verification during broadcasting and many other important 

aspects of the protocol we invite you to read the SNARKtor whitepaper https://eprint.ia-

cr.org/2024/099.pdf

Conclusions

Zero-knowledge techniques play an increasingly important role in the blockchain system 

allowing a wide range of different applications, such as transactions protecting users 

data, compliance, ZK rollups, trustless interoperability between chains, and many more. 

Nevertheless, despite all developments in optimization of ZK proving systems, their execu-

tion on-chain is still expensive. 

With SNARKtor we propose a decentralized solution to substantially reduce the verifica-

tion cost and improve scalability of an existing blockchain system. As the blockchain 

landscape evolves to accommodate ever-expanding transaction volumes and diverse use 

cases, developing such protocols become increasingly important to realize the vision of 

decentralized, scalable, compliant and privacy-preserving blockchain networks.


