Advanced UVM
in the real world
- Tutorial -

Mark Litterick
Jason Sprott
Jonathan Bromley
(Vanessa Cooper)

2014

wh) \sericaby BYESHN

SYSTEMS INITIATIVE

INTRODUCTION

DESIGN AND VEgFQJuﬂ;N
accellera | DV LN
© Verilab & Accellera 2 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

What is UVM?

Verification Environment

Application-specific code
Uses UVM & SystemVerilog

Universal Verification Methodology

(UVM)

Open source (Apache)
Class library & methodology
Facilitates interoperability
Uses SystemVerilog

SystemVerilog IEEE1800

Supported by all simulators

D D 8-

Multi-language simulators
VHDL, Verilog, SV, SC

accellera |
© Verilab & Accellera 3

SYSTEMS INITIATIVE

2014

SIGN AND VERIFICATION

DVI:I:IN

Key Elements of UVM

SystemVerilog Verification

Language Concepts
e syntax e constrained-random
- RTL e coverage-driven
« OOP transaction-level

 class
* interface
etc...

UVvM
Methodology
base-classes
use-cases
» configuration-db
» factory operation

phases
accellera |
© Verilab & Accellera

etc...
SYSTEMS INITIATIVE

2014

SIGN AND VERIFICATION

DVI:I:IN

SystemVerilog

* Language syntax & semantics are pre-requisite
— detailed understanding is not unique to UVM...

all SystemVerilog experience ...but be aware the verification
is directly relevant for UVM part of language is much bigger
(design/RTL, AVYM, VMM, etc.) than that used for design!

Verification
signals OOP

RTL

blocks interfaces class
modules clocking-block random
vectors scheduling constraints
assignments functions coverage
arrays tasks gqueues

etc. etc. etc.

.....................
accellera | DV
© Verilab & Accellera 5 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

Verification Concepts

* Generic language-independent concepts apply
— detailed understanding is not unique to UVM...

all verification experience Y| ...but be aware of the
is directly transferrable to UVM difference between
(any HLVL, CRV, CDV, etc.) || OOP and AOP!

eRM

Vera

AVM

VMM

OVM

SYSTEMS INITIATIVE

© Verilab & Acceller

Verification Concepts
architecture (env-agent-sqr/drv/mon)
random configuration & build
constrained-random sequence stimulus
scoreboard & protocol checkers
functional coverage collection & analysis
transaction-level modeling & TLM ports
messaging & simulation debug
verification planning & closure
* efc...

UvVM

IIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

UVM Methodology

. reg-model
* Base-class library . factory hard
_ . I e config-db
generic building blocks . callbacks
— solutions to software patterns * parameterizing
. ° sequences
— save time & effort e seg-items
. . * transactions
 Way of doing things . phases
— consistent approach * transaction-recording
. . . * event-pool
— facilitates interoperability e field-macros
— enables workforce flexibility * TtM-ports
e virtual-interfaces
UVM specific ...but with SystemVerilog * messaging
stuff has to be | | and verification knowledge | * components
learned it is not a huge effort! * objects gasy

ZU 14
DESIGN AND VERIFICATION
accellera B¥CE AND EXHIBITION

SYSTEMS INITIATIVE

Tutorial Topics

e Selected based on:
— experience on many projects at different clients
— relatively complex implementation or confusing for user
— benefit from deeper understanding of background code
— require more description than standard documentation
— time available for the tutorial!

* Demystifying the UVM Configuration Database

* Behind the Scenes of the UVM Factory

» Effective Stimulus & Sequence Hierarchies
 Advanced UVM Register Modeling & Performance

ll %GNVA' NNNNNNNNNNNNNN
dcceelera
© Verilab & Accellera 8 | CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

Demystifying the UVM
Configuration Database

Jason Sprott, Verilab, Ltd.
Vanessa Cooper, Verilab, Inc.

2014

wh) \sericaby BYESHN

SYSTEMS INITIATIVE

Agenda

* Overview of the problem

 Summary of relevant UVM 1.2 changes

e Basic syntax and usage

* Automatic configuration

e Hierarchical access discussion and examples
* Using configuration objects

 Debugging

* Gotchas

* Conclusions

2014

accellera DVLCCIN

© Verilab & Accellera 10

SYSTEMS INITIATIVE

OVERVIEW

DESIGN AND VERIFICATION
CONFEREMNCE AND EXHIBITION

© Verilab & Accellera 11

Where is configuration used?

g DESIGN AND VQEI-(‘E\.I
BVELIS

© Verilab & Accellera 12 CONFERE EXHIBITION

svsTems mmAve EUROPE

Config Mirrors Testbench Topology

CFG

Test

FG

Top Environment(s)

Agents
etc.

Sequencers,
= Monitors,
Drivers, etc.

* We need a consistent way of storing and accessing data
* Really flexible access from anywhere
* Understanding of hierarchy and control of scope DES.GNANDVE%QMD.;

CON
acllga © Verilab & Accellera 13 BMCEAND EXHIBITION

svsTems mmAve EUROPE

UVM 1.2 Changes

* Mantis 3472: UVM 1.1 set/get_config* methods deprecated

set config int(...) => uvm config db# (uvm bitstream t)::set(cntxt,...)
set config string(...) => uvm config db#(string) ::set(cntxt,...)
set config object(...) => uvm config db# (uvm object)::set(cntxt,...)

* In UVM 1.2 we use uvm_config_db methods directly

uvm _config db#(T) ::set(cntxt,"inst","field",value);

uvm _config db# (T) ::get(cntxt,"inst","field",value);

* Mantis 4666: bug fix for process problem in set()

* Mantis 3693: bug fix for command line enums

e Mantis 4920: bug fix for random stability when config database queried
* Thereis a uvml1l-to-uvm12.pl conversion script

3008/[era © Verilab & Accellera 14 B;E/"E”EEM

SYSTEMS INITIATIVE

BASIC SYNTAX AND USAGE

DESIGM AMD VE?gFQliN

fler DVCOIN

acce e a © Verllab & Acce”era 15 COMNFEREMNCE AND EXHIBITION
SYSTEMS INITIATIVE

Configuration Information Database

class uvm config db# (type T=int) extends uvm resource db# (T)

* Built on top of existing uvm_resource_db

* Small number of static methods(:: notation)

e String based keys to store and retrieve entries
e Supports hierarchy and controlled visibility

e Supports built-in and custom types (objects)
* Can be used all levels of a testbench

* Simplifies access, automates processes

ll lllllllllllllllllllll
acce era © Verllab & ACCe”era 16 EEEEEEEEEEEEEEEEEEEEEEE
SYSTEMS INITIATIVE

Configuration Information Database

entries
o
[]
)

Create or Update

r

automatic configuration is done by uvm_component::build_phase() not the database

Query

uvm _config db#(T)::set(...) uvm _config db#(T)::get(...)

uvm config db# (T) ::exists(...)

uvm config db# (T)::wait modified(...)

set() only modifies database entries
target component variables are modified by get() /A\

accellera | DV |:| N
© Verilab & Accellera 17 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Convenience Types

From uvm_config_db.svh

typedef uvm config db# (uvm bitstream t) uvm config int;
typedef uvm config db#(string) uvm config string;

typedef uvm config db# (uvm object) uvm config object;

typedef uvm config db# (uvm object wrapper) uvm config wrapper;

For objects use this style (or long-hand version above)

set config object::set(this,"env.agentl","config", m config)

For enums use this style (or long-hand version above)

set config int::set(this,"env.agentl","bus sz", SZ 128)

2014

accellera DVLCCIN

© Verilab & Accellera 18

SYSTEMS INITIATIVE

Creating & Modifying Entries

entries
®
H

» Creates entry if none exists

« Updates value if exists

» Does not modify target
component variables

-
-
-
-
-

uvm config db# (T): :set(cnt'xt, "inst","field",value) ;

DESIGMN AND VERQIFQ;I\'I&N
CON
acoellera © Verilab & Accellera 19 ZAATI T

SYSTEMS INITIATIVE

A bit about context

entries
®
H

» Creates entry if none exists

« Updates value if exists

» Does not modify target
component variables

uvm_config db# (uvm _object) : :set(this,"env.agentl"”,"config", m config)

* The entry is visible to components matching the full context:

(e.g. if current instance is test1) testl.env.agentl
» |s identified using the key "config" (not related to value variable name)
« And takes the type specific value of m _config supplied in argument

DESIGN AND vzngFQl'ﬂ:m
accellera | DVCOIN
© Verilab & Accellera 20 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

A bit more about context

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

e,

O N R R R R R R R R R
| ——————

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

uvm_config db# (uvm object) ::set (cn{:xt ,"inst" ,"field" ,value)

_cntxt must be of type uvm_component, null or uvm_rootiiget)
3008/[3"3 © Accellera Systems Initiative 21 coqs\nécsqugm

svsTems mmAve EUROPE

Creating & Modifying Entries Examples

entries
®
H

uvm_config_db#(T)::set(cnﬁxt,"inst","field",value);

uvm _config db# (T) ::set(uvm root::get(),”testl.env.agentl”,
“config”, m config)

uvm _config db#(T)::set(this,”env.agent*”,”config”, m configq)

uvm_config db#(T) ::set(null,”*”,”global cfg”, m global cfg)

DESIGM AMD VERQIFQJ\iN
accellera DV O

© Verllab & Acce”era 22 CONFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

Fetching Entries

entries
®
H

* Fetches entry matching the
key string at the full context

* Returns 0 on a falil

e """ = current instance

Modifies target variable

. |

uvm_config_db#(T)::get(cnt%t,"inst","field",value);

if ('uvm config db# (uvm object)::get(this, "","config",m config))
begin

"uvm_fatal(...)
end

DESIGM AMD VERQIFQJ\'iN
accellera | DVCON
© Verllab & ACCe”era 23 COMNFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

Checking Entry Exists

» Returns 1 if entry exists

|
uvm _config db# (T)::exists(cntxt,"inst","field");

if ('uvm config db#(int) ::exists(this,"","low power mode")) begin
// do something interesting
end

accellera | DV LN
© Verilab & Accellera 24 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Flow Control

entries
®
H

* Blocking task
« Waits on a set() to unblock

- ~
- ~
- S
- ~
- ~

(72

Only suitable for simple synchronization

A\

uvm config db# (T): :wait modified(cntxt,"inst","field");

// wait until someone changes value of entry
uvm config db# (int)::wait modified(this, "", "sb enable");
// We know the variable has been modified but we still

// need to do a get()to fetch new value
Not sensitive to an object's contents changing /A\ 5014
aceellera | | DVLCOIN

© Verllab & Acce”era 25 CONFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

AUTOMATIC CONFIGURATION

DESIGM AMD VERQIFQJ\'iN
accellera | DVCON
© Verllab & ACCe”era 26 COMNFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

Automatic Field Configuration

* Configures all variables registered using field macros

function void uvm component: :build phase(...);
apply config settings(...); // find fields, do get(), Scast
endfunction . . A
Only called once at build tlme/A\

* build phase for derived comps should call super.build ,
class my comp extends | Missing field-macro results in no auto-config /A\

"uvm_component utils begin (my comp)
"uvm _field int(my field,UVM DEFAULT)
‘uvm_field object(my special, (UVM DEFAULT |UVM READONLY))
"uvm_field object (my config,UVM DEFAULT)

UVM_READONLY results in no auto-confi¢ / \\

function void build phase(...);
super.build phase(...);

missing super.build results in no auto-config / \\

endfunction

3008/[era © Verilab & Accellera 27 B;E/"E”EEM

SYSTEMS INITIATIVE

Automatic Configuration & Objects

explicit
:.get()
Cuvm_object wm_object v/ LD renired or exphc get)
uvm_object my_config / X Wrong
my_config my_config X / Breaks auto-config ®
my_config ~ uvm_object X X Wrong

Recommend using uvm_config_object typede /A\

accellera © Verilab & Accellera 28

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION

DVLCLOIN

Explicit get() needs a cast

For objects

my config m cqllfig; set() and get() must use uvm_object type. /A\
uvm _config objectl:set(..., m config);
uvm _object tm

uvm_config object::get(..., tmp);
$cast(m config, tmp); // back to original type

For enums enums can use int, uvm_bitstream_t |/
or uvm_integral_t /A\
my enum t m S_sz; ‘ \
uvm_config intjgset(... , "m bus sz", SZ16); | |
int tmp;
uvm _config int::get(... ,"m bus sz", tmp)
m bus sz = my enum t'(tmp); // back to original type

using convenience types is typically less hassle /é\ oo 2014
accellera | = pveond
© Verilab & Accellera 29 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

HIERARCHICAL ACCESS
DISCUSSION & EXAMPLES

DESIGN AND vzngFg.llﬂ:m
accellera | DV LN
© Verilab & Accellera 30 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Hierarchical Access Examples

(A) single (B) multiple (C) global
19 X
N I M
fasenit| et
]
/
s ez <=
uvm_config db# (T) : :set (uvm_root::get()@"testl.env.agentl", (A)
"config", m_conlg)

uvim_config db# (T) : : set (this, "finv.agent*","config", m config) (B)

uvm_config db# (T) : : set(null,"*", "global cfg", m global cfg) (C)

| | Dangerous unless you can guarantee no name dlashes /N\ 2014,
accellera . - DVLLOIN
© Accellera Systems Initiative 31 CONFERENCE AND EXHIBITION

svsTems mmAve EUROPE

Hierarchical Access Examples

* Normally we only fetch what we are supposed to see

uvm _config db#(T)::get(this,"","config", m config)
* We can actually access anytJng testl
env
Not advisable unless components | agentl@===
are tightly coupled /A\ N
\ ’ agent2 <’"l

uvm_config db# (T) : :get (uvm_root::get(),"testl.env.agent2",

"config", m configq)
DESIGN AND VER?FQJ\'I&N

accellera - DV
© Accellera Systems Initiative 32 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

CONFIGURATION OBJECTS

DESIGN AND vngQJnﬂ;N
accellera | DV LN
© Verilab & Accellera 33 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Using objects for configuration

Do it, but you don’t have to for everything
— There will still be some discrete variables

Group related data

Pass by reference is useful and efficient
— Object handles rarely change after build()
— Changes to object contents can be seen immediately

We can use any type of variable inside a class

We have the option of adding a custom functionality
Option to randomize

Good for reuse — also recommend using the factory

m srio config = uvc_srio config::type id::create("m srio config");

accellera |
© Verilab & Accellera 34

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION

DVLLOIN

CONFEREMNCE AND EXHIBITION

Using Config Objects

before or during build phase in or after build phase
::set(...,"config" ,m env_cfq); ::get(...,"config",m configqg) ;
m_env_cfg uvm_config_db

vars @ref @ref
objects

object reference stored, not object contents

We will see changes to the object contents without a get()

if (m_config.varl == ...)

if (m_config.objl.var2 == ...)

m copy of var = m config.varl

copies can go out-of-date if contents change /A\ 2014

accellera | N/
© Verilab & Accellera 35 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Comparing Styles

set (this,"env","config",m c£fg) env.m foo config = m_cfg
Using uvm_config _db Traditional
e Target pulls (if needed) * Enclosing pushes
* set() only makes data e Target must exist
available to target(s) * Potential ordering issues
* Target doesn't have to e "Mother knows best!"
exist — Sometimes she does
* Automatic configuration _ e.g. legacy VIPs
Recommended
a@ @Accelzl;ystr::zn?i:zd a bitng both and that's OK B éoil&

SYSTEMS INITIATIVE

Hierarchy of Config Objects

class top env_config extends uvm object;
envl_config m envl config; handle to an instance of
env2 config m env2 config:-j::::=> : :
- = — another config object
class envl config-éxtends uvm object;
int some var;
int some other var;
agentl config m agentl config;
agent2 config m agent2 config;

endclass

endclass CFG | test

CFG | CFG looo| CFG | agent* config

F CFG DESIGMN AND VER?FQJ\"&N
CON
ﬂccellefa © Verilab & Accellera 37 R;E/"CE““D —T

SYSTEMS INITIATIVE

Auto Config and Setup Next

class top env extends uvm env;

envl m_envl; populated by auto config from
env2 m _env2;

top _env _config m config; set() done up the hierarchy

'uvm;component_utils_begin(to€79a6§////,

'uvm field object(m config; UVM DEFAULT)
'uvm_component utils end

makes embedded env1 config visible
function build phase() ; to env1 (doesn't set any variables)

super .build phase() ;
set config object(this, "envl","m copfig",

m config.m envl config);

set config object(this, "env2","m config",

m config.m env2 configq) ;

m envl = envl::type id::create("m envl");

m_env2 = env2::type_id::create("m;env2");\\\\
endfunction

endclass done even before env1 created

DESIGN AND vzngFgl'iN
accellera | DVCOIN
© Verilab & Accellera 38 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Same Again Next Level Down

|
populated by auto config from
set() done up the hierarchy

class envl extends uvm env;
envl config m config;

'uvm_component utils begin (top V)
'uvm field object(m config; UVM DEFAULT)
'uvm_component utils end

makes embedded config visible to
agent1 (doesn't set any variables)

function void build phase() ;

super .build phase() ;
set config object(this, "m agentl"/"m config",

m config.m agentl config);
set config object(this, "m agent2","m config",
m config.m agent2 config);
m _agentl = envl::type id::create("m agentl");
m agent2 = env2::type id::create("m agent2");
endfunction
endclass

DESIGN AND VER?FQJG&N
accellera » DV LN

© Accellera Systems Initiative 39 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

DEBUGGING

DESIGM AMD VER2IFQ¢1140N

fler DVCOIN

acce e/a © Verllab & Acce”era 40 COMNFEREMNCE AND EXHIBITION
SYSTEMS INITIATIVE

Enabling Debug Trace

sim_cmd +UVM TESTNAME=my test +UVM CONFIG DB TRACE

UVM_INFO reporter [CFGDB/SET] Configuration “* agent.* in intf”
(type virtual interface dut if) set by = (virtual interface
dut if)

UVM _INFO report [CFGDB/GET] Configuration

"uvm_ test top.env.agent.driver.in intf" (type virtual interface
dut if) read by uvm test top.env.agent.driver = (virtual
interface dut if) °?

A
Automatic configuration not as rigorous as your own checks /A\\

DESIGN AND vngQl'iN
accellera | DV LN
© Verilab & Accellera 41 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Debug: check get() return value

* Defensive programming and informative messages

if ('uvm _config db #(uvm object)::get(this,"","m config",m configq)
|| m config == null)
begin
print config with audit(); // optional - context sensitive

‘uvm_fatal (get type name (),
"Fetch of m config failed. Needs to be setup by
enclosing environment")

UVM INFO @ O: uvm test top.env [CFGPRT] visible resources:
#

Juvm test top.env] : (class uvm pkg::uvm object)
{top_énv_config}
UVM INFO ... uvm test top(reads: O @:E::hrites: 1 @0

i
UVM top env.sv(44) @ 0: uvm test top.env [top env] Fetch

of m config Xailed. Needs to be setup by enclosing environment
e print_config_with_audit() also shows variable values

DESIGM AMD VERQIFQJ\'iN
accellera DVCOIN

© Verilab & Accellera 42 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

GOTCHAS

VER2IFQ¢1140]

0o DESIGN AND
accellera DV LN
© Verilab & Accellera 43 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Common Gotchas

Missing super.build_phase(): no automatic configuration
Missing field macro: no automatic configuration
UVM_READONLY on field: no automatic configuration

— occasionally intentional to highlight explicit get() requirement

Missing get() when set() called after build_phase()
— Explicit get() required, as set() does not call apply _config_settings()

uvm_config_object::set() writes a null object

— automated configuration doesn't check for this

Wrong or mismatched types: on enum or object set()

— causes auto configuration issues
Missing cast: for object or enum explicit get()
Typo in string for inst or field names
Wrong context as a starting point for access visibility
Wildcard in ::set() path too wild creating too much visibility

DESIGN AND VEFgFQJ“Iﬂ;N
acce,lera © Verilab & Acce”era 44 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

CONCLUSION AND REFERENCES

DESIGM AMD VERQIFQJ\'iN
accellera | DVCON
© Verllab & ACCe”era 45 COMNFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

Conclusion

 The uvm_config_db provides a consistent and flexible
mechanism of storing configuration data

* Fits into hierarchical configuration paradigm
e Automatic configuration can simplify things
— but you need to understand how it works

« Recommend: encapsulating configuration in objects
— especially data that might change after build phase

e Recommend: uvm_config_object for objects and
uvm_config_int for enums

— helps avoid specifying wrong type causing issues with auto
configuration

* There are some easy to spot gotchas
* It's not an "all or nothing" approach

DESIGN AND VEFgFQJ"Iﬂ;N
accellera | DV
© Verilab & Accellera 46 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Additional Reading & References

e Accellera

— http://www.accellera.org

e Getting Started with UVM: A Beginner’s Guide, Vanessa Cooper, Verilab Publishing
2013

* Doulos UVM Guidelines:

— http://www.doulos.com/knowhow/sysverilog/uvm/easier uvm guidelines
e DVCON2014: Advanced UVM Register Modelling:

— http://www.verilab.com/files/litterick register final 1.pdf

e DVCON2014: Demystifying the UVM Configuration Database
— http://www.verilab.com/files/configdb dvcon2014.pdf

e Hierarchical Testbench Configuration Using uvm_config_db:

— http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf

DESIGM AMD VERQIFQJ\'iN
accellera DV O

© Verilab & Accellera 47 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

http://www.accellera.org
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines
http://www.verilab.com/files/litterick_register_final_1.pdf
http://www.verilab.com/files/litterick_register_final_1.pdf
http://www.verilab.com/files/litterick_register_final_1.pdf
http://www.verilab.com/files/configdb_dvcon2014.pdf
http://www.verilab.com/files/configdb_dvcon2014.pdf
http://www.verilab.com/files/configdb_dvcon2014.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf
http://www.synopsys.com/Services/Documents/hierarchical-testbench-configuration-using-uvm.pdf

Behind the Scenes of the
UVM Factory

Mark Litterick, Verilab GmbH.

2014

wd) \seriabs BERN

SYSTEMS INITIATIVE

Introduction

e Factory pattern in OOP
e standard software paradigm

e Implementation in UVM

e base-class implementation and operation

e Usage of factory and build configuration
e understanding detailed usage model

e Debugging factory problems & gotchas
e things the watch out for and common mistakes

e Conclusion
e additional reading and references

.....................
accellera | DV
© Verilab & Accellera 49 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

FACTORY PATTERN

DESIGN AND VEgFQJuﬂ;N
accellera | DV LN
© Verilab & Accellera 50 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Software Patterns

In software engineering, a design pattern is
a general reusable solution to a commonly
occurring problem within a given context.

e SystemVerilog is an Object-Oriented Programming language

 UVM makes extensive use of standard OOP patterns
— Factory - creation of objects without specifying exact type
— Object Pool - sharing set of initialized objects
— Singleton - ensure only one instance with global access
— Proxy - provides surrogate or placeholder for another object
— Publisher/Subscriber - object distribution to 0 or more targets
— Strategy/Policy - implement behavioural parameter sets
— etc...

DESIGN AND VEFgFQJ"Iﬂ;N
accellera | DV
© Verilab & Accellera 51 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

The Factory Pattern

The factory method pattern is an object-oriented creational design pattern
to implement the concept of factories and deals with the problem of creating

objects without specifying the exact class of object that will be created.

UVM implements a version of the factory method pattern

Factory method pattern overview:
— define a seperate method for creating objects

— subclasses override method to specify derived type
— client receives handle to derived class

e Factory pattern enables:
— users override class types and operation
without modifying environment code
— just add derived class & override line
— original code operates on derived class
without being aware of substitution

substitute any component or object in the verification @% -1

ol

SIS

3
[7

DESIGN AND VERIFICATION

environment without modifying a single line of code
DV

MNCE AND EXHIBITION

CONFERE

SYSTEMS INITIATIVE

Factory Usage in UVM

* Factory is an essential part of UVM
— required for test registration and operation

— recommended for all components
(env, agent, sequencer, driver, monitor, scoreboard, etc.)

— recommended for all objects
(config, transaction, seq_item, etc.)

— not appropriate for static interconnect
(TLM port, TLM FIFO, cover group, interface, etc.)
e Operates in conjunction with configuration
— both affect topology and behavior of environment
— factory responsible for inst and type overrides and construction
— configuration responsible for build and functional behavior

DESIGN AND VEFgFQJ"Iﬂ;N
acce,lera © Verilab & Acce”era 53 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

FACTORY IMPLEMENTATION

DESIGMN AND VERQIFQ;L&N
3003//8" d © Verilab & Accellera 54 RM‘E‘EEM
SYSTEMS INITIATIVE

UVM Factory Implementation

Factory Classes

uvm_factory | 1 “» uvm_object_wrapper
‘ | T.Trame | | T Tname |
______ L
uvim_component_registry uvm_object_registry

e The main UVM files are:

— uvm_object defines.svh

— uvm_registry.svh : :
— uvm_factory.svh a great benefit pf UVM is that
. all source-code is open-source
* Overview:

— user object and component types are registered via typedef
— factory generates and stores proxies: * registry#(T,Tname)
— proxy only knows how to construct the object it represents

— factory determines what type to create based on configuration, then
asks that type’s proxy to construct instance for the user

3008// era © Verilab & Accellera 55 BM‘E”EEM

SYSTEMS INITIATIVE

User AP]

* Register components and objects with the factory

"uvm_component utils(component type) a

do not use deprecat
* -
"uvm_object utils(object type) sequence”_utils /A\

* Construct components and objects using create not new
— components should be created during build phase of parent

component type::type id::create(“name", this);

object type::type id::create(“name™, this);

* Use type-based override mechanisms

set type override by type(...); do not use |
name-based AF /A\

set inst override by type(...);

2014
3008/[era © Verilab & Accellera 56 B;E/"E”Eﬁm

SYSTEMS INITIATIVE

‘'uvm_component_utils - Macro

"define uvm _component utils (T) \

class my comp extends uvm component;
"uvm_component utils (my comp)
endclass

& - -k

c I : L U/ S Y o Ny

class my comp extends uvm component;

typedef uvm component registry # (my comp, "my comp") type id;

staticAunction type id get type();
refurn type id::get();

explains what my_comp::type_id is

declared a typedef specialization |
of uvm_component_registry class

_wrapper get object type ()

endfunction

but what about register and ::create ???

const static string type name = "my comp";
virtual function string get type name ();
return type name;
endfunction
endclass

SYSTEMS INITIATIVE

© Verilab & Accellera 57

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

uvm_component registry - Register

#

local

1if

f
end

endfu

virtu
stati
stati
stati
endclas

class uvm_component registry proxy type

typedef uvm component registry # (T, Tname) this type;

static function this type get();

(me == null) begin construct instance of proxy, not actual class
uvm_factoEz_ﬁ_idaﬁquﬁﬁzzgz:get();
me = new,

return me;

(type T, string Tname) extends uys™ |ightweight substitute for real object

static this_type me = get(); €= |ocal static proxy variable calls get()

register proxy with factory

.register (me) ; &=

registration is via static initialization
=> happens at simulation load time

nction
function void uvm factory::register (uvm object wrapper obj);
// add to associative arrays
m_type names[obj.get type name ()] = obj;
m_types[obj] = 1;
endfunction a

SYSTEMS INITIATIVE

: 2014
to register a class type, you only need a typedef @ Vil e
specialization of its proxy class, using ‘'uvm_*_utils

uvm_component_registry - Create

static create function

comp = my comp::type id::create (“comp”,this)9

create is called during build_phase
=> happens at simulation run time

class uvm component registry # (T, Tna

static function T create (name,parent,contxt="");
uvm_object obj; 4 request factory create based on existing type overrides (if any)
uvm factory £ OVIT TadCCOTry:-.9€t (),
oby] = £. create component by type (ggt () ,contxt, name, parent) ;
1 fIN\f=—= rt tal(...);
return handle to actual class instance
endfu
virtual function uvm component create comjonent (name,parent);
T obj; ' search queues for overrides
obj = newt: construct instance of actual class l q |

re function uvm compo gnt uvm factory::crea component by type
ndf] = k N - -
(type, contxt, namay parent) ;

"l requested type = §gnd override by type (requested type, path);
smee return requested_typgﬂbreate_component(name, parent) ;
| call create_component for proxy of override type (or original if no override)
to enable factory for a class you only need to DESIN AND VRRIEICATION
accellera) end ry Tore you only V| DV
register it and call type_id::create instead of new

SYSTEMS INITIATIVE

Factory Overrides

not shown: use static *_type::get_type() in all cases

e Users can override original types with derived types:

— using registry wrapper methods

original type::type id::set_type override (override type);

original type::type id::set_inst override (override type,...);

— using component factory methods

set type override by type(original type,override type) ;

set_inst override by type(...,original type,override type) ;

* Factory constructs override descriptor and adds to a queue:

SYSTEMS INITIATIVE

function void uvm factory::set type override by type (...);
override = new(...);
m_ type overrides.push back (override) ;
endfunction — ‘$-”"_ .
this is the queue searched by uvm_factory::find_override_by type
© Verilab & Accellera 60 BMEEEM

Factory Operation

a extends uvm_comp; uvm_registry#(a,"a”) uvm_factory
‘uvm_comp_utils(a)

uvm_registry#(b,“b“) m_types[obj]

a::type_id::set_overrige

|

env
a::type_id::create()'

- reqgister
- override
- create 2014

acceller d © Verilab & Accellera 61 BM‘E‘EEM

SYSTEMS INITIATIVE

INTERACTION OF
FACTORY & CONFIGURATION

DESIGMN AND VERQIFQ;I\'ﬁN
3009// era © Verilab & Accellera 62 RMEEEM
SYSTEMS INITIATIVE

UVM Configuration

* config_db::set, e.g. using convenience type for uvm_object

uvm_config object::set(this,"","field",6 value)

* build phase for component base-class automatically
configures all fields registered using field macros

function void uvm component: :build phase(...);
apply config settings(..); // search for fields & configure
endfunction

* build phase for derived comps must call super.build

class my comp extends
‘uvm_component util mlssmg field-macro results in no auto-conflg
‘uvm_field int (my field, UVM DEFAULT) ‘

|
function void buili Missing super.build results in no auto-config /A\

super.build phase(..);
// class-specific build operations like create

D14
accellera | DVCOIN

© Verilab & Accellera 63 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Example Environment

class my comp extends uvm component;
"uvm_component utils(my comp) €=
endclass

register class type with factory

class my obj extends uvm object;
"uvm_object utils(my obj)
endclass

class my env extends uvm env;
my comp comp;
?Y—Obj obJ; , , register field for automation
uvm component utils begin(my env)
\uvm_field_object(obj,UVM_DEFAULf?””’
‘uvm_component utils end
function new(..);

allow auto-config using apply_config_settings()

function void buil ase(..); : - : -
super.build phase(..); (example) requires obj to be in config_db
if (obj==null) ‘uvm f3&al(..) (there is no create/new inside this env)
comp = my_comp::typg_id::create(“comp”,this);
endfunction : -
sndelass use create() instead of new() for children

—
a\c"f??f? ? © Verilab & Accellera 64 I?V!:';"\ol

SYSTEMS INITIATIVE

Example Configure and Override

// modify behavior
endclass

class my test extends uvm
my env env;
my obj obj;

class test comp extends my_comp;‘$-~.
"uvm_component utils (test comp)

must be derived in order to substitute
I

“class test comp extends uvm_component;”
does not work, must be derived from my_comg

"uvm_component utils (my test)

function new(..);
function void build

create using factory (results only in new, build comes later)

super.build phase(..);

my comp::get type(),

env = my env::type id::create(“env”,this);
obj = my obj::type id::create(“obj”,this);
set_type overide by type (€—— override type in factory prior to env::build

test_comp::get_type()); (configure obj in db prior to env::build
uvm _config object::set(this, "&nv”,~0DJ7,0b7J);

endfunction
endclass

build phase is top-down 14
lower-level child::build comes after parent::build completed ._'CIAQ

3008/[8['3 © Verilab & Accellera

SYSTEMS INITIATIVE

65 CONFERENCE AND EXHIBITION

Override Order

override env and comp before my_env::type id::.create is always OK

\ remember after create only new() has occurred, no build yet /A\

function void mY test::build phase(..);

set type overide by type (my comp, test comp); //
set type overide by type (my env,) ; //
env = my env::type id::create(“env”,this);

set type overide by type (my comp,test comp); //

—env S/

Good
Good

Good
Bad

endfunction

override comp after my_env::type id::create is OK
since my_comp is not yet created
(it is created later in my env::build_phase)

override env after my_env::type id::create is BAD
since my_env is already created
(hence override is simply ignored)

A
a\cce??era) © Verilab & Accellera 66

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

Configure Order

config::set using a null value is an error
(obj is not yet constructed)

\ config::set after obj is created and before env is created is OK
functioNo id my t (env create does not use the value anyway)

— — s // Bad
obj = my obj::type id::create(“obj”,this);
uvm_config object::set(this, “env”,“obj”,obj); // Good
env = my env::type id::create(“env”,this);

uvm_config object::set(this, “env”,“obj”,obj); // Good

endfunction config::set after both obj and env are created is also OK
(obj setting in config_db is not used until env::build phase)

so config*::set can come before or after the create for corresponding component /A\

do not confuse create (which tells the factory to new original or override type
with build phase (which is top-down dynamic building of environment) 2014

3008] era © Verilab & Accellera 67 ng"!;!'ﬁm

SYSTEMS INITIATIVE

Interaction of Factory, Config & Build

function void build phase(..);

env = my env::type id::create(“env”,this);

obj = my obj::type id::create(“obj”,this

set type overide by type (my comp, test

uvm_config object::set(this, “env”,“ob{"

endfunction
endclass

class my test extends uvm test;
function new(..); J

class my env extends uvm env;
"uvm_field object (obj,UVM DEFAULT)
function void build phase(..);

super.build phase(..), =—_Tp
if (obj==null) "uvm fatal(..)

comp = my comp::type id::create(“comp”, this)
endfunction
endclass

ﬂﬂcellera © Verilab & Accellera 68

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

FACTORY PROBLEMS

DESIGMN AND VEgFQJﬂiN
acceller d © Verilab & Accellera 69 BM‘E‘EE”.'EM
SYSTEMS INITIATIVE

Problem Detection

* Factory and configuration problems are especially frustrating
— often the code compiles and runs, because it is legal code
— but ignores the user overrides and specialization

» Different kinds of problems may be detected:

— at compile time (if you are lucky or careless!)

— at run-time (usually during initial phases)
— never...
— ...by inspection only!

* Worse still, accuracy of report is tool dependant
— although some bugs are reported by UVM base-classes

factory and configuration problems are a special category of bugs /A\

2014
3008/[era © Verilab & Accellera 70 B;E/"E”Eﬁm

SYSTEMS INITIATIVE

Common Factory Problems

e using new instead of ::type_id::create
— typically deep in hierarchy somewhere, and not exposed

* deriving override class from same base as original class
— override class must derive from original class for substitution

* performing ::type_id::create on override instead of original
— this will limit flexibility and was probably not intended

* factory override after an instance of original class created
— this order problem is hard to see and reports no errors

e confusing class inheritance with build composition
— super has nothing to do with parent/child relationship
— itis only related to super-class and sub-class inheritance

* bad string matching and typos when using name-based API
— name-based factory APl is not recommended, use type-based

DESIGN AND VEFgFQJ"Iﬂ;N
acce/lera © Verilab & Acce”era 71 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

Debugging Factory Usage

» call factory.print() in base-test end_of elaboration phase
— prints all classes registered with factory and current overrides

1f (uvm report enabled (UVM FULL)) factory.print();

 call this.print() in base-test end_of elaboration phase

— prints the entire test environment topology that was actually built
1f (uvm report enabled (UVM FULL)) this.print();

e temporarily call this.print() anywhere during build
— e.g. at the end of relevant suspicious new and build* functions

 use +UVM _CONFIG_DB_TRACE to debug configuration

e pay attention to the handle identifiers in tool windows
— e.g.component@123 or object@456
— they should be identical for all references to the same thing

DESIGN AND VEFgFQJ"Iﬂ;N
acce/lera © Verilab & Acce”era 72 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

CONCLUSION & REFERENCES

DESIGMN AND VERQIFQ;L&N
3003//8" d © Verilab & Accellera 73 RM‘E‘EEM
SYSTEMS INITIATIVE

Conclusion

* UVM Factory is easy to use
— simple user APl and guidelines
— complicated behind the scenes
— can be difficult to debug

e Standard OOP pattern - not invented for OVM/UVM
— but implemented by the base class library

* Used in conjunction with configuration to control testbench
— topology, class types, content and behavior
— without modifying source code of environment

* You do not need to understand detailed internal operation
— but open-source UVM code means we can see implementation ...
— ... learn cool stuff that keeps us interested and informed!

DESIGN AND VEFgFQJ"Iﬂ;N
acce,lera © Verilab & Acce”era 74 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

Additional Reading & References

 UVM base-class code
 UVM class reference documentation

 “The OVM/UVM Factory & Factory Overrides: How
They Work - Why They Are Important”

— SNUG 2012, Cliff Cummings, www.sunburst-design.com

* “Improve Your SystemVerilog OOP Skills: By Learning
Principles and Patterns”

— SVUG 2008, Jason Sprott, www.verilab.com

* “Understanding the Factory and Configuration”
a@ Verification Academy, Mentor, www.mentor.com gesguyevemcaon

© Verilab & Accellera 75 CONFERENCE AND EXHIBITION

TEM:

http://www.sunburst-design.com/
http://www.sunburst-design.com/
http://www.sunburst-design.com/
http://www.verilab.com/

L

SYSTEMS INITIATIVE

Questions

(2014

DESIGMN AMD VERIFICATION

DVLCOIN

CONMFERENCE AND EXHIBITION

EURCOPE

UVM Stimulus and Sequences

Jonathan Bromley, Verilab Ltd
Mark Litterick, Verilab GmbH

2014

SIGM AMD VERIFICATIOMN

veriaby BYEoN

—

(3 acce//era

SYSTEMS INITIATIVE

Introduction

e You already know about sequencers and sequences

In this session:
e Review of some fundamentals

e Structuring your environment and sequences for...
e ... localization of responsibilities
o ... flexibility for environment developers and test writers

e |ntegrating sequences with other UVM features ...

e ... configuration, messaging, objections

ll %GNVA' NNNNNNNNNNNNNN
dcceelera
© Verilab & Accellera 78 | CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

GETTING THE BASICS RIGHT

DESIGN AND vngQJnﬂ;N
accellera | DV LN
© Verilab & Accellera 79 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

UVM stimulus architecture review

* Monitor+driver+sequencer
= agctive agent
implementing a protocol

e Stimulus driven into DUT
by a driver

e Stimulus data sent to driver
from a sequencer

* Run sequences on sequencer
to create interesting activity

accellera © Verilab & Accellera 80

SYSTEMS INITIATIVE

sequences

‘ C
\sqr
0 monitored
sequence items
items v ‘\i
‘ driver monitor
\ y .

2014

DESIGN AND VERIFICATION

DV LN

N)

Stimulus transaction class (item)

* |tem base class should contain ONLY transaction data

class vbus jitem<€exignds uvm sequence item;
rand logic [15:0] addr;

Used by monitor

"uvm_object utils begin (vbus item) sequences
"uvm_field int (addr, UVM DEFAULT) Y f
©

sqr

e Stimulus item needs additional ey g

constraints and control knobs

class vbus_seq item extends vbus_item;

rand bit only IO space; Bus protocol controls only!
constraint c restrict IO { Class is part of UVC

only I0_space -> (addr >= 'hFCO0)/].NO distribution constraints

J NO DUT-specific strategy
o o |

DESIGN AND VEFgFQJ“Iﬂ;N
acce/lera © Verilab & Acce”era 81 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

N)

Low-level sequences

e Simple, general-purpose stream of transactions with
some Coordination Not DUT-specific! Supplied with the UVC

class vbus_seq block wr extends vbus_sequence;
rand bit [15:0] block_size;; Control knobs

sequences

rand bit [15:0] base addr; available for users Y f
constraint c block align { c
block size inside {1,2,4,8,16}; sar
base addr % block size == 0} - NO distribution constraints [™ne
} + NO DUT-specific strategy || 9
vbus seq item item; |

task body () ;
for (int beat=0; beat<block size; beat++) begin
"uvm_do with(item,
{addr==base addr+beat; dir==WR;})

end
endtask Legal and meaningful even without any external constraint

DESIGN AND VEFgFQJ“Iﬂ;N
acce/lera © Verilab & Acce”era 82 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

N)

UVC-provided sequence library

« NOT DUT-specific!
 Minimal user API
* Run on agent sequencer

e Just a collection of useful sequences

* In asingle sequence-library file

— exception to usual one-class-per-file guideline

/// Sequence library for vbus UVC (l): Master sequences

typedef class vbus seq block wr; ///< Write a block of locations
typedef class vbus seq block rd; ///< Read a b
typedef class vbus seq rmw; ///< Read-mod

Forward typedefs:
» provide a manifest
» avoid code order issues

class vbus_seq_lib_basgsSiifnds uvm_sequence;

/} ' Sequence implementations] EXtended from seq_lib base class

class vbus seq block wr extendgkvbus_seq;lib_base;
"uvm_object utils (vbus seq block wr)

Mainly for use by environment writers, not test writers

Legal and meaningful even without any external constraint

DESIGN AND VEFgFICC)J“Iﬂ;N
acce/lera © Verilab & Acce”era 83 B¥CE AND EXHIBITION

SYSTEMS INITIATIVE

Naming of control knobs

* |n a constraint, names resolve into the object being
randomized - not into the local context!

* Creates a problem of choice of name:
rand bit [15:0] base_addr;

vbus seq item item; ‘\‘{Lybbecause there is no base_addr in item
"uvm_do with(item, {addr == base addr + 3;})
item.addr k;'

* Usethe local: : qualifier

rand bit [15:0] addr;%mw feature - OK in all major tools
item, {addr =="local::addr + 3;})

"uvm_do_ with (

item.addr

See also restricted constraint block 2014

accellera (has very poor tool support) %cv NNNNNNNNNNNNNN

© Verilab & Accellera 84 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

The story so far

UVC should provide a built-in sequence library that...

e provides a flexible base for customization
e does not restrict the UVC's applicability
* is already interesting for reactive slave sequences

— predominantly random
* may be useful for simple bring-up tests
* needs a layer above to provide useful test writer API

ll lllllllllllllllllllll
acce era © Verilab & Accellera 8 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

LAUNCHING SEQUENCES

DESIGMN AND VEgFQJﬂiN
acceller d © Verilab & Accellera 86 Q;E/"‘E‘fg”l'ﬂm
SYSTEMS INITIATIVE

Launching a sequence: uvm do

 On same sequencer, from another sequence's body

— good for simple class vbus_seq block wr ...

iy rand bit [15:0] block size;
>equence COmpOSItIOn rand bit [15:0] base addr;

class vbus_seq bwr2 extends vbus_seq lib base;
"uvm_object utils (vbus seq bwr2)
vbus seq block wr bwr seq; user-API control knob
rand bit [15:0] first addr;
task body () lower sequence runs on same sequencer
bit [15:0] follow_ach
"uvm_do with (bwr seq;~ {base addr == local::first addr;})
follow addr = bwr_ seq.base addr + bwr seq.block size;
"uvm_do with(bwr seq, {base addr == local::follow addr;})

el

constraint using values picked from
previous sequence's randomization

DESIGM AMD VERQIFQJ\'iN
accellera DVCOIN

© Verilab & Accellera 87 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Launching a sequence: uvm do on

 On adifferent sequencer
— good for virtual sequences
sqr_v| [sqr i
‘'uvm_do_on
vbus_se @

virtual sequencer

class collision_seq extends dut_ seq base;
"uvm_object utils(collision seq)
‘uvm_declare_p_sequencer(dut_sequencen*k
vbus write seqg vbus seq; datatype of virtual sequencer
12c write seq 12c_seq;
task body () ; properties of the virtual sequencer
fork
"uvm_do _on with (vbus seq, p_sequencer. sqr_% <. 1)
"uvm _do on with(i2c seq, p _sequencer.sqr i/~ {...})
join

DESIGN AND VEFgFQJ“Iﬂ;N
acce/lera © Verilab & Acce”era 88 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

Launching a sequence: start

e Can be called from any code
* Always used for top-level test sequence

virtual sequencer

class collision_test extends dut test base;
‘uvm_component utils(collision test)
collision seq test seq;

HESIa

. (o vifolfw]
pase_dut_env envi[™o v is built by test
task run phase (uvm phase phase);
test seq = collision seq::tyfe id::create("collision test");

(’é>test_seq.start(env.top_sequencer);

configure/randomize the test seq

DESIGM AMD VERQIFQJ\'iN
accellera | DVCOIN

© Verilab & Accellera 89 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

N)
When does randomization occur?

* uvm_do macros randomize as late as possible

— Allows randomization to be influenced by environment

use uvm_do macros for any sequence that must react to DUT or TB state

* seg.start () doesn't allow late randomization

use seq.start only for top level sequences

* alternative: e
explicitly call _
seq.randomize () with... not invoked by
sub-methods uvm_do macros

of start () B

seq.post_start()

accellera o Veriat & Accelors - DV

SYSTEMS INITIATIVE

Review of UVM1.2 changes

e Default sequence of sequencer is deprecated
— don't configure or use the count variable
— don't expect a test sequence to start automatically
— no random or simple sequences

— nhouvm update sequence lib and 1tem macro

2014

accellera | DVLCCIN

© Verilab & Accellera 91

SYSTEMS INITIATIVE

IMPLEMENTATION HINTS

DESIGMN AND VEgFQJﬂiN
acceller d © Verilab & Accellera 92 Q;E/"‘E‘fg”l'ﬂm
SYSTEMS INITIATIVE

—}

Exploiting the sequencer

* m_Ssequencer
— reference to the sequencer we're running on
— datatype is uvm_sequence, too generic for most uses

* p_sequencer

— exists only if you use 'uvm_declare_p sequencer

— has the correct data type for the sequence's chosen
sequencer class must run on a sequencer of that type

— allows access to members of the sequencer
* persistent data across the life of many sequences
* storage of configuration information, sub-sequencer references, ...

DESIGM AMD VERQIFQJ\'iN
accellera DVCOIN

© Verilab & Accellera 93 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

—)

Readback from a sequence item

* For read items, driver can populate data ...

I
class vbus_driver ...

class vbus seq item extends ...

class vbus_item extends ...
rand logic [15:0] addr;
rand logic [15:0]Tdata;
rand bit writeNptRead;

task read(vbus_item rd item);

rd item ®data = vif.DATABUS ;

e ...then sequence ufer can collect the data:

class vbus_ readback seq extends vbus_seq base;
vbus seq item item;
logic [15:0] readbakk data;

"uvm_do with(itempay{'writeNotRead;})
readback data = item.data;

DESIGM AMD VERQIFQJ\'iN
accellera DVCOIN

© Verllab & Acce”era 94 CONFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

Readback from a sequence

* Sequence has no obvious place to store the data

e Specific provision is needed in each sequence layer

class vbus block readback seq extends vbus_ seq base;
vbus readback seq rb;

rand int unsigned block size; sequence provides non-rand

logic [15:0] readback_block[$]r4r”” storage for result
task body() ;

for (int i=0; i<block_size; i++) begin
"uvm do with(rb, {...;})~
readback block.push back (rb.readback data);

collect result data from
lower-level sequence

class vbus readback seq ...

"uvm_do_with (

" {lwriteNotRead;}); |
readback data

1tem.daE%i..-. class vbus_seq item ...
vbus item ...

rand ; 15:0] addr;

rand logic [15: data;

rand bit writeNotRead; DESIGNANDVE%@MLN
accellera | DV LI
© Verilab & Accellera 95

CONFEREMNCE AND EXHIBITION
SYSTEMS INITIATIVE

I\--

—}

Other readback techniques

* Collect data from the monitor
— Requires an analysis export
— Timing can be non-obvious

e Use sequence response item instead of request item
— Response can be same type as request, or different
— Harder to code and manage than using the request item
— Easy to get into trouble with response queue

 Use UVM1.2 response handler hook

— Automated user-specified handling of every response item
— Custom support for out-of-order responses etc.

.....................
accellera | DV
© Verilab & Accellera 9 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

LAYERING

D VERQIFQ;!&]

DESIGMN AN
© Verilab & Accellera 97 RMEHEM

Virtual sequences and sequencers

* No sequence item type

sequence
[p_sequencer

class env_sqr extends uvm_ sequencer; virtual sequencer

vbus sqgr sgr v;

set by env's
connect_phase

‘uvm_do_on | 1S9V [sgr

vbus_se @

D M D M

12c_sqr sgr 1i;

e Coordinate the work of
multiple sequence(r)s

class vbusN then i2c_ seq extends env_seq base;
rand int unsigned vbus_cqunt;

task body () ; properties of the virtual sequencer
repeat (vbus_count) begin
‘uvm_do on witlNyvbus|seq, p sequencer.sqr v, A ...})
end

‘uvm _do_on with (i2c , P _sequencer.sqgr 1, {...})

control knobs

DESIGN AND VEFgFQJ“Iﬂ;N
acce,lera © Verilab & Acce”era 98 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

Sequences at various levels

tests JJ
v

test >
" sequencer test
= seq lib
@
o
: l
S
o - environment| 5
4 r%g(;fliéelr sequencer env
e seq lib
©
S
= l
> UVC env 5
encapsulate all sequencer

protocol UVCs '-

physical

o
|
::3
c c
o
o 2
S
S o
o
»

14
accellera DV O

© Verilab & Accellera 99 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

UVC-environment sequences

* Coordinate actions across multiple agents

_ : Likely to be useful in
s reqUIred by prOtOCOI higher level sequences

* Example: request on one port,
response on another

class reql rsp2 seq ...
rand bit [15:0] req_adrs;‘f’

bit [15:0] rsp_data;€— readback result
vbus_seq item vbus_ item;

control knob

"uvm _do _on with(vbus item, p sequencer.vbusl sqr,
{adrs==REQUEST ADRS; data==req adrs; writeNotRead;})

"uvm _do on with(vbus item, p sequencer.vbus2 sqr,
{adrs==RESPONSE_ADRS; 'writeNotRead;})

rsp data = vbus_item.data;

2014
3008/[era © Verilab & Accellera 100 B;E/"‘E”Eﬁm

SYSTEMS INITIATIVE

DUT-level virtual sequences

* Provide API for writer of test-level sequences
— Setup, normal traffic, scenario building blocks

* Have detailed control knobs to customize operation

— but must make sense if run unconstrained

class dut_setup seq extends env_seq base; |

class dut_stop seq extends env_seq base;

class dut_training seq extends env_seq base;
rand int unsigned preamble length;
rand bit early abort error;
rand bit sync_loss_error;

DESIGN AND VEFgFQJ“Iﬂ;N
acce,lera © Verilab & Acce”era 1 01 B¥J’CE AND EXHIBITION

SYSTEMS INITIATIVE

Test-level virtual sequences

* Provide primary API for test writer
— Complete setup and traffic scenarios
— Background irritators to run in parallel with other tests

* Access to non-protocol blocks: clock UVC, interrupts...
* Directed tests mandated by spec. or verification plan

class clock off on seq extends test seq base;
rand int unsigned clock off cycles;
rand bit reset while clock off;
rand bit clock_active on reset release;

class dut _init over i2c_seq extends test seq base;
rand bit reset before init;

ll %cv ||||||||||||||
acce era © Verilab &Accellera 102 EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

WORKING WITH OTHER UVM
FEATURES

DESIGMN AND VERQIFQ;I\'ﬁN
3009// era © Verilab & Accellera 103 RMEEEM
SYSTEMS INITIATIVE

Sequences and configuration
* Avoid pulling data directly from the configuration DB

env gets reference to

test' fig object
eSS conrg 9dec configuration object
N .
\C instance, created by test
env
e O - /
Ce
I, <l 2 C1 C2
env gives each agenta |/
reference to sub-co/nﬁ:;l'//7/y
7
s & | Ycie
L x agent takes responsibility
™ for giving sequencer

a reference to its config

DESIGN AND VEFgFICC)J"Iﬂ;N
accellera AT

SYSTEMS INITIATIVE

Using objections in sequences
* roughly, don't
* but there are some exceptions:

— top-level test sequence
— directed-test functionality that must complete

e automatic per-sequence objections are deprecated
— don't use

* if possible, raise/drop outside the sequence
— preserves sequence's re-usability

SIGMN AMND VE RQOCa;lqu':iN
accellera | DVC:CIN
© Verilab & Accellera 105

SYSTEMS INITIATIVE

—}

Sequences and messaging

 Messaging from sequences or sequence items
automatically uses their sequencer's reporter

class test seq extends uvm_sequence;

task body() ;
"uvm_info ("BODY", "test seq runs", UVM LOW)

test _seq ts = new();

don't add your own
ts.start(test_sqr);

hierarchy information

UVM_INFO ../src/test_seq_reporting.sv(13) @ O:
uvm_test_top.test_env.test_agent.test_sqr@@ [BODY] test_seq runs

DESIGN AND VEFgFQJ"Iﬂ;N
accellera | DV
© Verilab & Accellera 106 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

L

SYSTEMS INITIATIVE

Questions

(2014

DESIGMN AMD VERIFICATION

DVLCOIN

CONMFERENCE AND EXHIBITION

EURCOPE

Advanced UVM Register
Modeling & Performance

Mark Litterick, Verilab GmbH.

2014

SYSTEMS INITIATIVE

Introduction

 UVM register model overview

— structure, integration, concepts & operation

— field modeling, access policies & interaction

— behavior modification using hooks & callbacks
* Modeling examples

— worked examples with multiple solutions illustrated

— field access policies, field interaction, model interaction
e Register model performance

— impact of factory on large register model environments

DESIGM AMD VE RQOCJ\%N
accellera DVLCCIN

SYSTEMS INITIATIVE © Verilab & Accellera 109

REGISTER MODEL OVERVIEW

DESIGM AMD VERQIFQJ\'iN
accellera | DVCON
© Verllab & ACCe”era 1 1 O COMNFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

Register Model Structure

e Register model (or register abstraction layer)
— models memory-mapped behavior of registers in DUT
— topology, organization, packing, mapping, operation, ...
— facilitates stimulus generation, checks & coverage

REGISTER BLOCK REGISTERS FIELDS
|

R1[FA\| FB || FC || FD
R2 FE FF
MEMORY MEM | || |
RS
RX| FX |
ADDRESS ADDR
MAP MAP | [RN[_FL |
— =
accellera MIRRORED VALUE ACTUAL VALUE

SYSTEMS INITIATIVE © Verilab & Accellera 111

Register Model Integration

REG MODEL <)
| I N NORMALLY AUTO-GENERATED
amm DUE TO REGULAR STRUCTURE
“ AND LARGE SIZE
MAP RN|:|] (c) BUSUVC
A Y MANUALLY-CODED
! ADAPTERL.| TYPICALLY STRAIGHTFORWARD
: . TRANSACTION TRANSLATION
«— L E
PREDICTOR CENT M S =

* Set of DUT-specific files that extend uvm_reg* base

* Instantiated in env alongside bus interface UVCs
— adapter converts generic read/write to bus transactions
— predictor updates model based on observed transactions (2014

a@ DV CIN

SYSTEMS INITIATIVE © Verilab & Accellera 112

Register Model Concepts

REG MODEL @ ENV D
]
MEM C - -~
BACKDOOR ACCESS

MAP @ BUS UVC MEM
? [

I | ADABTER S FRONT-DOOR ACCESS

| =
PREDICTOR gyt ACTIVE MONITORING

!-i—_ﬁ -

CPU @ FW

R2

1l
[]

|

VOLATILE UPDATE

R

* Normal front-door access via bus transaction & I/F

— sneaky backdoor access via hdl_path - no bus transaction

* Volatile fields modified by non-bus RTL functionality

SYSTEMS INITIATIVE

© Verilab & Accellera

113

— model updated using active monitoring via hdl_path

2014

DESIGN AND VERIFICATION

DV LN

Active & Passive Operation

ENV
REG MODEL -—
olB==s o
1 i DD/#
MEP RN D\ @ BUS UVC

PREDICTOR [*— M S

INTERFACE

* Model must tolerate active & passive operations:
1. active model read/write generates items via adapter
2. passive behavior when a sequence does not use model

3. passive behavior when embedded CPU updates register 2014

SYSTEMS INITIATIVE © Verilab & Accellera 114

Register Access API

: stimulus result
configure() REG MODEL
reset ()
m reset
randomize () = " m_mirrored |
p.4 4
value | | A___|_ :
set()| | “— o— 7 — [- ~~ predict ()
m_desired <4=RTL

write () ,update () ,poke () read () ,mirror () ,peek()

e Use-case can be register- or field-centric

— constrained random stimulus typically register-centric
e.g. reg.randomize(); reg.update();

— directed or higher-level scenarios typically field-centric
e.g. var.randomize() with {...}; field.write(var.value); 2014
accellera DVLCOIN

SYSTEMS INITIATIVE © Verilab & Accellera 115

Register Field Modeling

* Field access policy

— self-contained
operations on
this register field

Field interaction

modify on write

modify on read

REG C}*
W—— > FIELD %}R
field value field operation

Most complex modeling
related to field interaction
not field access policies

\
A

U4
U4
7

\ ’
W %-QQERCE %QE} R

a
VA

/
I
*

<

A |

W—= >

AFFECTED == R

* Register access rights in associated memory map

SYSTEMS INITIATIVE

Model behavior of DUT to check volatile fields

2014

SIGN AND VERIFICATION

Difficult problem but outside scope of register model

DVI:I:IN

© Verilab & Accellera

116

N

READ

READ
VALUE

READ

CLEAR

READ
SET

Field Access Policies

« Comprehensive pre-defined field access policies

NO
WRITE
(0

NOACCESS

WRITE WRITE WRITE WRITE WRITE
VALUE CLEAR SET TOGGLE ONCE
WO WOocC WOS - wo1

WC WS
RO RW Wic W1S m; w1
woc WosS
WSRC —
RC WRC - W1SRC Just defining access
WOSRC policy is not enough!
WCRS :
RS WRS W1CRS | - Must a!so |mpler_nent
WOCRS special behavior!

e User-defined field access policies can be added

local static bit m =

uvm _reg field::define access (“UDAP”) ;

ZUTl4

accd 1f ('uvm reg field::define access (“UDAP”)) uvm error(...)
N = = — —

SYSTEMS INITIATIVE

© Verilab & Accellera

TION

ITION

Hooks & Callbacks

* Field base class has empty virtual method hooks

— implement in derived field to specialize behavior \

class my reg field extends uvm reg field;
virtual task post write(item rw);

// pre/post_write and pre/post _read
endta gre all active operations on model

-

pre_write
post_write
_>| pre_read
post _read

e Callback base class has empty virtual metkods

— implement in derived callback & register it with Yjeld

class my field cb extends uvm reg cbs;
function new(string name, ...);
virtual task post| phqtimportant callback

// specific imp!

endtask

post_predict

my field cb my cb = new("my cb", ...);

N
accellera
~

uvm reg field cb::add(regX.fieldY, my cb);

for passive operation is ~

pre_write
post_write
pre_read
post _read
B post _predict
encode
decode

SYSTEMS INITIATIVE

N

CONFERENCE AND EXHIBITION

Hook & Callback Execution

* Field method hooks are always executed
e Callback methods are only executed if registered

task uvm reg field::do_write(item rw);

ACTUAL WRITE
I

HOOK METHOD

rw.local map.do write (rw); €=

post write (rw); €=
for (uvm reg cbs cb=cbs.first();

b!=null;
zb:cgz next ()) CALLBACK METHOD
. / FOR ALL REGISTERED CBS

cb.post write (rw); I
endtask - callbacks registered with field using add
 multiple callbacks can be registered with field
3@ « callback methods executed in cbs queue order

EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

MODELING EXAMPLES

DESIGN AND vngQJnﬂ;N
accellera | DV LN
© Verilab & Accellera 120 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Write-to-Reset Example

set to reset value on write

W — 35 wies S—» R

 Example user-defined field access policy
— pre-defined access policies for Write-to-Clear/Set (WC,WS)

— user-defined policy required for Write-to-Reset (WRES)

uvin_reg field::define access (“"WRES”)

 Demonstrate three possible solutions:
— post_write hook implementation in derived field
— post_write implementation in callback
— post_predict implementation in callback

ll lllllllllllllllllllll
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE © Verilab & Accellera 121

WRES Using post_write Hook

class wres field t extends uvm;:eg_fieldae\\~

DERIVED FIELD

virtual task post write (uvm reg item rw);
if (!predict(rw.get reset())) U IMPLEMENT post write TO

NOT PASSIVE SET MIRROR TO RESET VALUE

class wres_reg_t extends uvm_reg; USE DERIVED FIELlD

rand wres field t wres field; € I
FIELD CREATED IN REG::BUILD

function void build|() ;

/’ // wres_ field create()/configure(.."“"WRES”..)

4
/

class my reg block extends uvm reg block;
rand wres_reg t wres_ reg;

él.u.lction void build () ; REGISTER CREATED IN BLOCK::BUILD

\i’ // wres reg create()/configure () /build()/add map ()
\
SN

a/cce/fe; reg/block build() is not a UVM component build_phase() 53/
~

/
I
I
I
i
1
\

\

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

WRES Using post_write Callback

class wres field cb extends uvm reg cbs;

DERIVED CALLBACK

virtual task post write (uvm reg item rw);

LE {oprechsie (Two g EeeeiE ()) ‘1 IMPLEMENT post_write TO

NOT PASSIVE

SET MIRROR TO RESET VALUE

class wres _reg t extends uvm_reg;
rand uvm_reg field wres_field; g

USE BASE FIELD

function void build () ;
// wres field create()/configure(..“WRES”..)

~—
accelld
v

class my reg block extends uvm _reg bl CONSTRUCT CALLBACK

rand wres_reg t wres_ reg;

“ .. REGISTER CALLBACK
function void build(); WITH REQUIRED FIELD

// wres_reg create()/configyfe () /build() /add map ()
wres field cb wres cb = new("wres cb");
uvm _reg field cb::add(wres_reg.wres field, wres cb);

2014

FRIFICATION

D EXHIBITION

SYSTEMS INITIATIVE

WRES Using post _predict Callback

class wres field cb extends

SET MIRROR VALUE TO RESET STATE

IMPLEMENT post_predict TO

virtual function void post_predié%i..,fld,value,..);
if (kind==UVM PREDICT WRITE) value = fld.get reset();

/|| PASSIVE OPERATION

class wres reg t exte
rand uvm reg field w;

function void build(
// wres field creatq

class my reg bloc]
rand wres_reg t |

function void bu

virtual
input
input
inout
input
input
input

// wres_reg create()/configure () /build()/add map ()
wres field cb wres cb = new("wres cb"); 2014
3/009/14! uvm _reg field cb::add(wres_reg.wres field, wres cb);

function void post predict (
uvm reg field fld,

uvm reg data t previous,
uvm reg data t wvalue,

uvm predict e kind,

uvm path e path,

uvm_ reg map map

posf_predict is only if we use this callback
available for fields =p» with a register we get
not registers silent non-operation!

FRIFICATION

D EXHIBITION

SYSTEMS INITIATIVE

Lock/Protect Example

only allow write if lock is off

Y
4

W aEé%E} PROTECTED ‘E}R
W %\ LOCK %Ep =

 Example register field interaction
— protected field behavior based on state of lock field, or

— lock field operation modifies behavior of protected field

 Demonstrate two possible solutions:
— post_predict implementation in callback
— dynamic field access policy controlled by callback
— (not bad pre_write implementation from UVM UG) ___. 12014

accellera DV O

SYSTEMS INITIATIVE © Verilab & Accellera 125

Lock Using post predict Callback

class prot field cb extends uvm reg cbs;

HANDLE TO

local uvm reg field lock field; &

super.new (name)
this.lock field =
endfunction

function new (string name, uvm reg field lock);

s \ ADD TO NEW()

virtual function void post predict(..previous,value);

LOCK FIELD

SIGNATURE

1f (kind == UVM PREDICT WRITE)
if (lock field.get())

value = previous; €&

REVERT TO PREVIOUS
VALUE IF LOCK ACTIVE

endfunction

class my reg block extends uvm reg DLIOCK;
prot field cb prot cb = new(“prot cb”, lock field);
uvim_reg field cb::add(prot field, prot cb);

CONNECT LOCK FIELD

LN

REGISTER CALLBACK

WITH PROTECTED FIELD I

PTION

SYSTEMS INITIATIVE

Lock Using Dynamic Access Policy

class lock field cb extends uvm reg cbs;
— - - = HANDLE TO

local uvm reg field prot field; & PROTECTED FIELD

function new (string name, uvm reg field prot);
super.new (name)
this.prot field =

endfunction

prot;

virtual function void post predict SET ACCESS POLICY FOR
PROTECTED FIELD BASED ON

if (kind == UVM_PREDICT_WRITE) LOCK OPERATION
if (value)

void' (prot field.set access("RO")) ‘

else _ prot_field.get_access()
void' (prot field.set access ("RW' RETURNS CURRENT POLICY

€1 REGISTER CALLBACK |

WITH LOCK FIELD CONNECT PROTECTED FIELD
class my reg block tends uvm reg block;
lock field cb lock cb new (“lock cb”, prot field); 5014
aaim uvmm_reg field cb::add(lock field, lock cb); T

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Register Side-Effects Example

 Randomize or modify registers & reconfigure DUT

— what about UVC configuration?

* update from register sequences
* snoop on DUT bus transactions

not passive

not backdoor

* implement post_predict callback

% passive & backdoor

callback registered access UVC config
with model field via a handle
REG MODEL | } ! [/CIMY_UVC
MEM R1[[] |] l“ | sif:le_efféct_cb ','"
R2 [| —=t=1f (field.write(val)) "1, S D |
E cfg.set var(val);~ >
MAP |[rN .
— acent| VIS 5014

a@ ENV

SYSTEMS INITIATIVE © Verilab & Accellera 128

EEEEEEEEEEEEEEEEEEEEEEE

Config Update Using Callback

class reg cfg cb extends uvm reg cbs;

my config cfg; € HANDLE TO CONFIG OBJECT

function new (string name, my config cfqg);
super.new (name) ;
this.cfg = cfg;

endfunction SET CONFIG ON WRITE
virtual function void post _prediy,/ (TRXﬁSlT_i?:ES}EEEF(IQiﬁgED)
1f (kind == UVM PREDICT WRITE)
cfg.set var (my enum t' (value));
endfunction
ENVIRONMENT HAS
class my env extends uvm_env; / UVC & REG_MODEL
o o o |
uvc = my uvc::type id::create(...); CONNECT CONFIG
reg model = my reg block::type id::creAteé(- .7 [
REGISTER CALLBACK

reg cfg cb cfg cb = new(“cfg cb”, uvc.cfq); 5014
a’cce/[a uvmm reg field cb::add(reg model.reg.field, cfg cb); FRIEICATION
N~ 7

D EXHIBITION

SYSTEMS INITIATIVE

REGISTER MODEL PERFORMANCE

DESIGM AMD VERQIFQJ\'iN
accellera | DVCON
© Verllab & ACCe”era 130 COMNFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

Performance

* Big register models have perform

ance impact

— full SoC can have >10k fields €

MANY REGISTER CLASSES
(MORE THAN REST OF ENV)

* Register model & RTL typically auto-generated
— made-to-measure for each derivative €| DIFFERENT USE-CASE

THAN FACTORY

Q)
ENV
REGISTER DESCRIPTION - 5
IRl cPU B FW
J (TEXT, XML, YAML, etc.) REG MODER,
e |[FIO N
R T MEM L]
R2[| |
Al il
s a RX
i (c) |uvc N[
GENERATOR TOOL/SCRIPTS

N .
SYSTEMS INITIATIVE © Verilab & Accellera 131

EEEEEEEEEEEEEEEEEEEEEEE

Life Without The Factory

 Example SoC with 14k+ fields in 7k registers
— many register classes (most fields are base type)
— not using factory overrides — generated on demand

FACTORY | COMPILE LOAD BUILD
TYPES TIME TIME TIME

NO REGISTER MODEL 598 23 9 I 280M

+REGISTERS USING FACTORY |8563 '/'14‘1‘ l/’és 1.5.\\ 702M

+REGISTERS NO FACTORY 3 71 l 2N 17 1 / 398M
D

* Register model still works without the factory

— do not use uvm_object _utils macro for fields & registers

— construct registers using new instead of type_id::create (2014

DESIGN AND VERIFICATION

a@ DV CIN

SYSTEMS INITIATIVE © Verilab & Accellera 132

‘'uvm_object utils

"define uvm _object utils(T) \

‘m_uvm _object registry internal (T,T) \

class my reg extends uvm reg;
"uvm_object utils (my regqg)

endclass

"define m uvm obiject registry internal (T, S}/ \
class my reg extends uvm reg;
typedef uvm object registry # (my reg,"my reg") type id;

stii;%}lunction type id get type();
refurn type id::get () . -y
/o e ° explains what my_reg::type_id is

declare a typedef specialization |- y+apper get object type () ;
of uvm_object_registry class

but what about factory registration

endfunction ;
function uvm object create (strin and type_id::create ???
const static string type name = "my reg";

vigual function string get type name ();
return type name;

declare some methods

for factory API 2014,
dce DVLOIN

© Verllab & Acce”era 133 CONFEREMNCE AND EXHIBITION

SYSTEMS INITIATIVE

Load Time Penalty

class uvm object registry
#(type T, string Tname) extends uy

proxy type
—| lightweight substitute for real object
typedef uvm object registry #(T,Tname) this type;

local static this type me = get();€— |ocal static proxy variable calls get()
static function this type get();

T (e == mulll) eScHR construct instance of proxy, not real class
uvm_factory f = HVﬁ:fg@tory:ggeb\},
me = new;‘?’ - _
f.register (me) ; ¢ register proxy with factory

end

Y registration is via static initialization

endfunction => happens at simulation load time
function void uvm factory::register (uvm object wrapper obj);

virtu
stati
::ﬂ » thousands of registers means thousands of proxy classes
j@f are constructed and added to factory when files loaded

* do not need these classes for register generator use-case!

4
accellera DV

SYSTEMS INITIATIVE

// add tno ascsnciative arravs

Build Time Penalty

reg= my reg::type id::create(“reg”,,get full name());

class uvm object registry # (T, Tname) extends uvm object wrapper;

static function T create (name,parent,contxt="");

uvm_object obj; 4 request factory create based on existing type overrides (if any)
uvm factory £ OVIT _ITaCCtory. -gec(),
() ,contxt,name, parent) ;

obj = f create object by type (ge
if ' uvm_repo fatal(...);
endfun return handle to object
virtual function uvm object create obje (name, parent) ;
T obj; Y .
B parent)/f selarch queues for overrides
r i
nc{ constructs actual object lm s faCtory ere thAbjeCt—by—type
T —— ———r—— &, parent)

ndd* create and factory search takes time for thousands of registers
during the build_phase for the environment (build time)
E * no need to search for overrides for register generator use-case!

DESIGN AND VERIFICATION

accellera DV

SYSTEMS INITIATIVE

Conclusions

* Register models are complicated!
— consider: passive operation, backdoor access, use-cases,...
— this problem is not unique to uvm_reg

Multiple possible modeling solutions...

— ... but some are better than others!

— effort for developers & generators (but easy for users)
Full-chip SoC register model performance impact
— for generated models we can avoid using the factory

All solutions evaluated in UVM-1.2 & OVM-2.1.2

— updated uvm _reg pkg that includes UVM bug fixes
(available from www.verilab.com)

ll lllllllllllllllllllll
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE © Verilab & Accellera 136

http://www.verilab.com

Additional Reading & References

 UVM base-class code
 UVM class reference documentation

 “Advanced UVM Register Modeling :
There’s More Than One Way To Skin A Reg”

— DVCon 2014, Litterick & Harnisch, www.verilab.com
(includes additional examples like triggered writes)

DESIGMN AND VER?FQJ\'I&N
3008// era © Verilab & Accellera 137 BME"EE‘M
SYSTEMS INITIATIVE

http://www.verilab.com

L

SYSTEMS INITIATIVE

Questions

(2014

DESIGMN AMD VERIFICATION

DVLCOIN

CONMFERENCE AND EXHIBITION

EURCOPE

