
Introducing the Data Flow Index

A Data Flow Index (DFI) is an essential piece of infrastructure software technology that
combines two technical capabilities in a single system: you can ingest trillions of
records at extremely high rates, with immediately queryable indexes across attributes
in the ingest stream on a single commodity server. Within milliseconds of ingestion, ad
hoc low-latency queries can be executed against the DFI, incorporating all data
streamed into the system up to that point, limited only by available storage. 

The underlying technology built at General System was originally created to address
the unique performance and scalability challenges of high-velocity spatiotemporal
data models. The DFI is proving value in many data science and operational analysis
workflows with similar requirements and characteristics: 

● Up to trillions of records in a single index
● Index insertion rates of millions of records per second 
● Indexed search across multiple record attributes 
● Fast queries concurrent with live insertion 

While not a database per se, DFI supports many database-like operations on the
underlying data stream. Queries like “find the unique set of entities within this geographic
polygon between the hours of 2pm and 3pm on Tuesday” are executed via the API as a
single operation.  

1 of 6
Commercial-in-Confidence

Dec 22



In typical enterprise data architectures, systems that handle high-velocity ingestion are
separate from systems that handle complex querying, with end-to-end latencies
commonly measured in minutes, hours, or even days. For many streaming data models
with spatiotemporal attributes, without a DFI it is not possible to build large indexes at
the incoming data rates generally, impeding valuable insights being extracted for use
in operational decision-making from data already acquired.  

DFI closes this technology gap, providing unprecedented online indexing performance
and scalability for high-velocity streaming and geospatial data models.  

Problem  
Operationalising high-velocity geospatial data models runs into many familiar technical
challenges around basic scalability of indexing and storage. 

Ability to search across multiple columns and attributes at scale. It is common to
use multiple indexes in smaller databases to support diverse query patterns. In larger
databases, scalability requires that data be *index-organised*. There can only be a
single global indexing structure that can be used for all queries without reorganising
the data. This is a prohibitive restriction for many data models when using traditional
indexing structures. In location-tracking data models, for example, analytic queries
need to quickly search across any subset of geospatial, temporal and entity identity
attributes.

Indexing billions or trillions of small records quickly. Velocity implies volume, and
conventional indexing algorithms can require more storage than the search keys they
index.  100TB of mobile telemetry or automotive probes can fit on a single server, but
the storage amplification of indexing multiple attributes has serious performance
implications. Even if the storage exists to store the indexes on the server, they will not
fit in memory, which makes index construction prohibitively slow, regardless of whether
the data is real-time streaming or batch oriented.  

Storage hotspots in geospatial data models. Unlike many other types of data models
that can ensure uniform distributions of data and load via mostly static sharding
techniques, geospatial data models exhibit severe and unpredictable distribution of
both data and query load. This is one of the most common operational failure modes in
systems handling live location data. The ability to adaptively redistribute vast amounts
of data and load in milliseconds when these hotspots occur requires direct support
from every part of the storage engine. Popular scale-out data infrastructure was never
designed to redistribute hotspots in this way because they don’t occur in most
traditional large-scale data models. 

2 of 6
Commercial-in-Confidence

Dec 22



Poor storage cache efficiency. Caching algorithms in databases and operating
systems require that data access patterns are simple and one-dimensional to be
effective, like traversing an array or ordered tree. As both the ratio of storage to cache
and implied dimensionality of the index traversal increases, storage caches quickly
become ineffective. This is intrinsic to the theory of cache algorithms. Addressing this
requires a fundamental redesign of storage architectures to remove reliance on disk
caching algorithms for efficient utilisation of storage bandwidth. 

A key insight into these technical challenges is that they are not isolated to a single
part of the software implementation. A scalable, multi-attribute indexing algorithm is
not sufficient if paired with an open-source storage engine unable to handle
high-dimensionality access methods or high-density storage. Equally, a sophisticated
high-performance storage engine is also not sufficient if the indexing architecture can’t
express complex multi-attribute relationships or has a prohibitively large storage
footprint.  

Neither the indexing technology nor the necessary storage engine capabilities exist in
open source, necessitating a holistic approach from first principles.  

Solution  

Underlying the DFI is a highly optimised database kernel written in C++ that
incorporates all of the elements one would expect in a state-of-the-art design:
thread-per-core software architecture, vectorised storage model, user space
scheduling of I/O and execution, and other features that ensure maximum
performance and hardware efficiency. This provides a strong foundation for scalable
data processing but by itself does not address any of the technical challenges of
indexing high-velocity data flows.  

The DFI kernel contains multiple technologies and architectural features, described
below, not found in any similar system. Collectively, these technologies work together
to enable unparalleled indexing performance for high-velocity streaming and
geospatial data models. 

Succinct High-Dimensionality Indexing  

All data models in the implementation of the DFI are organised using novel
high-dimensionality succinct indexes. Importantly, diverse and unrelated data types
can be concurrently represented within a single indexing structure. The properties of

3 of 6
Commercial-in-Confidence

Dec 22



these indexing structures differ from conventional indexes, and some other succinct
indexes, in important ways.  

The storage location of a record is content addressable, similar to a hash table, based
on multiple independent attributes of the record while preserving the relationships
between attributes across records in the index. Indexing is fully adaptive to the
distribution of the underlying data across the indexed attributes. 

As with all succinct data structures, the in-memory representation is extremely
compact relative to the data being indexed. The index for 100TB of data may be small
enough to fit entirely within the CPU cache. When a record is inserted, a simple lookup
operation against the index identifies the disk page to which it will be appended. This
direct path through storage incurs almost no write amplification, throughput being
limited primarily by I/O bandwidth. 

The DFI index implementation uses a design of sufficient dimensionality to index
spatiotemporal data models and additional key attributes. Most data types, such as
entity IDs, consume a single dimension in the index. A few data types, notably
geospatial, may consume two or three dimensions. The ability to mix and match data
types in the index, up to the dimensionality budget, enables an unusual degree of
flexibility for supporting different data models. Most succinct indexes are
one-dimensional or require that all dimensions be the same type. DFIs do not have this
limitation. 

Indexing of geospatial data types is not limited to points. The index is purpose-built to
succinctly index polygon relationships as well, allowing query operations to directly
look up geospatial polygon intersection relationships on the index with the same kind
of performance and scalability one can expect with other scalar data types.  

The primary limitation of this type of indexing is that it is poorly suited to storage
engines not purpose-built to support them.  

I/O Cache and Scheduler Designed for High-Dimensionality Indexes  

High-dimensionality indexing, which is critical for DFI performance and scalability, has
long been known to present fundamental problems for caching algorithms, including
the storage cache in the operating system and all popular storage engines. Caching
algorithms work by trying to predict future data access requirements based on
previous data accesses. The problem of optimal data caching is equivalent to universal
sequence prediction. Universal sequence prediction is infamously intractable even in
narrowly restricted cases. All practical algorithms for effectively predicting what to
cache are limited to simple access patterns in a single dimension, such as traversing
an array or ordered tree.  

4 of 6
Commercial-in-Confidence

Dec 22



Because the DFI relies on a high-dimensionality index as its primary data access
method, the data access patterns are unable to be successfully predicted by a storage
cache. Without an effective storage cache in front of the workload, almost every
storage access becomes stalled by frequent page faults. Using high-dimensionality
data access methods on a conventional storage engine architecture is a recipe for
poor storage performance.  

The DFI’s storage architecture takes heed of Alan Kay’s aphorism, “the best way to
predict the future is to invent it”. Concurrent high-throughput database kernels often
have thousands of operations scheduled at any point in time, even for single queries,
since they may be decomposed into myriad sub-operations internally. In
thread-per-core software architectures like DFI, the I/O scheduler has perfect visibility
into and control over storage access patterns thousands of operations into the future
as well as the contents of the storage cache.  

Instead of relying solely on prediction to ensure efficient eviction and pre-fetching
patterns, the scheduler uses its ability to “see into the future” to dynamically reorder
and optimise the sequence of operations far beyond what a storage cache can predict
on its own to maximise locality of storage access and minimise the number of storage
operations.  

Adaptive Re-sharding To Eliminate Hotspots  

Data models with a geospatial component are prone to unpredictable “hotspotting”, the
phenomenon where individual data shards become temporarily overloaded due to a
sudden influx of data or queries focused on a specific geographic region. When a
hotspot occurs, the throughput of the entire system becomes bottlenecked by the
throughput of the most overloaded shard. Because there is no way to know when and
where a hotspot will occur, minimising their effects requires both proactive and reactive
strategies. 

The DFI employs a continuous adaptive re-sharding strategy to mitigate hotspots. If a
shard becomes overloaded or is at risk of becoming overloaded then it is automatically
re-sharded, distributing the records of that shard over many new shards that effectively
subdivide the index. This has the effect of distributing data and load over a much wider
set of shards while reducing the computational cost of operations over the individual
shards. Individual shards are kept small to ensure that re-sharding operations have
minimal impact on tail latencies.  

Re-sharding requires no user configuration or interaction and is fast, occurring
automatically in the background.  

5 of 6
Commercial-in-Confidence

Dec 22



In high-velocity ingest environments, individual re-sharding operations need to be
sufficiently fast that they do not slow down or disrupt concurrent ingestion. A single
server with fast, high-density storage may have extremely large numbers of active
shards and, for the purposes of re-sharding, may need to create and destroy a
significant subset of those shards each second.  

High-Density Storage Architecture For Extreme Scalability  

Today, servers often have upwards of a petabyte of attached storage, and for
high-velocity data models this type of storage density is often important for cost
effectiveness. Storage engine architectures that map shards to files in the filesystem
frequently run into significant practical performance and scalability limitations when
operating at this scale. The DFI makes these limitations particularly acute due to its
continuous adaptive re-sharding behaviour. 

Typical Linux filesystems do not perform well when processes can have millions of
open files that are continuously being created or destroyed. Like many sophisticated
database kernels, DFI is able to create a specialised non-POSIX filesystem that coexists
with standard Linux environments while bypassing most scalability and performance
limitations of conventional filesystems. This allows the DFI to manage upwards of a
petabyte of storage with consistent performance across vast numbers of logical files
while implementing additional features that conventional filesystems do not support.  

This filesystem can be installed as an overlay on an existing Linux filesystem, where it
looks like a set of large files, or directly installed on sets of raw block devices with no
other filesystem.

For more information, please visit us here.

6 of 6
Commercial-in-Confidence

Dec 22

https://generalsystem.com/contact/

