Tebipenem In vitro Activity against a Collection of Pathogens Responsible for Urinary Tract Infections in the US

R.E. Mendes\(^a\), I.A. Critchley\(^b\), N. Cotonero\(^c\), J.M. Streit\(^d\), H.S. Sader\(^e\), M. Castanheira\(^f\)

\(^a\)JMI Laboratories, North Liberty, IA, USA, \(^b\)Spero Therapeutics, Cambridge, MA, USA

Introduction

- Enterobacteriaceae—especially Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis—are widely implicated in urinary tract infection (UTI).
- Many oral agents are used to manage UTIs, but their clinical usefulness has been compromised by the increased prevalence of extended-spectrum β-lactamases (ESBL) and carbapenemases.

Materials and Methods

Bacterial organisms

- A total of 5,776 Enterobacteriaceae collected from 52 medical centers in 9 US Census Divisions were recovered from urine samples during the 2010–2012 STEWARDS Surveillance Program and included in the study.
- Bacterial identification was confirmed by standard algorithms supported by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany).

Susceptibility testing

- Isolates were tested for susceptibility by broth microdilution following the Clinical and Laboratory Standards Institute (CLSI) M06 (2016) guidelines.
- Fractional inhibitory concentration (FIC) indices were calculated for tebipenem and comparator agents based on predefined breakpoints provided by the National Committee for Clinical Laboratory Standards (CLSI). M07 (2016).

Results

- E. coli comprised 65.4% of all Enterobacteriaceae pathogen isolates included in the study and associated with UTI, followed by K. pneumoniae (14.3%) and P. mirabilis (6.6%) (Table 1).
- Other pathogens comprised 25 species or species groups (13.7%).
- In general, E. coli, K. pneumoniae, and P. mirabilis were non-susceptible to tebipenem with FIC indices of ≥0.5 (Table 1).
- E. coli isolates were susceptible to tebipenem (FIC >0.5) compared to K. pneumoniae, whereas non-susceptibility rates for amoxicillin-clavulanate and cefazolin were not observed (Table 1).
- Other oral cephalosporins (e.g., cefazolin and ceftriaxone) showed susceptibility rates >90% (Table 2).
- Other pathogens comprised 25 species or species groups (13.7%).

Conclusions

- Tebipenem displayed potent activity against Enterobacteriaceae pathogens causing UTI among patients in the US. The in vivo potency of oral tebipenem was similar to that of the intravenous parenteral.
- In general, these data showed compromised activity of oral agents used for treating UTI. These data support the development of tebipenem as an oral option for management of UTI in the US.

Acknowledgements

This research was supported by a contract by Spero Therapeutics, Inc. and funded in part with federal funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority, under Contract No. HHS0100201800015C.

References

Contact

R.E. Mendes
JMI Laboratories
185 North Liberty Centre, Suite A
North Liberty, IA 52317
Phone: (319) 665-3371
Fax: (319) 665-3371
Email: rsmendes@jmilib.com

Table 1. Antimicrobial activity of tebipenem and comparator agents tested against the main organisms and organism groups

<table>
<thead>
<tr>
<th>Organism/organism group (no. of isolates)</th>
<th>MIC range (µg/mL)</th>
<th>Tebipenem</th>
<th>Cefazolin</th>
<th>Aztreonam</th>
<th>Ceftazidime</th>
<th>Ceftriaxone</th>
<th>Meropenem</th>
<th>Imipenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td></td>
<td>0.03 ≤0.12</td>
<td>16 ≤128</td>
<td>>16 >16</td>
<td>>16 >16</td>
<td>>16 >32</td>
<td>≤0.12 ≤0.12</td>
<td>≤0.12 ≤0.12</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td></td>
<td>0.03 ≤0.12</td>
<td>16 ≤128</td>
<td>>16 >16</td>
<td>>16 >16</td>
<td>>16 >32</td>
<td>≤0.12 ≤0.12</td>
<td>≤0.12 ≤0.12</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td></td>
<td>0.03 ≤0.12</td>
<td>16 ≤128</td>
<td>>16 >16</td>
<td>>16 >16</td>
<td>>16 >32</td>
<td>≤0.12 ≤0.12</td>
<td>≤0.12 ≤0.12</td>
</tr>
</tbody>
</table>

Table 2. Antimicrobial activity of tebipenem and comparator agents tested against Enterobacteriaceae and other pathogens

- Ertapenem, imipenem, nitrofurantoin, and piperacillin-tazobactam were also active against most Enterobacteriaceae and other pathogens tested.
- MIC results of ≥2 µg/mL for ceftazidime, aztreonam, and/or ceftriaxone were analyzed separately, and presumptively for the presence of ESBL (Table 2).
- Other pathogens comprised 25 species or species groups (13.7%).

Figure 1. Rates of non-susceptibility for amoxicillin-clavulanate, cefazolin (predicts nonsusceptibility to oral cephalosporins), levofloxacin, and trimethoprim-sulfamethoxazole (TMP-SMA) against E. coli (Figure 1A), K. pneumoniae (Figure 1B), and P. mirabilis (Figure 1C). Criteria as published by CLSI (2021).