
Security Assessment

Webacy (Audit)
CertiK Verified on Apr 3rd, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

4 Major 1 Resolved, 2 Mitigated, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

6 Medium 6 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

4 Minor 4 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

6 Informational 6 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY WEBACY (AUDIT)

CertiK Verified on Apr 3rd, 2023

Webacy (Audit)

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Service

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 04/03/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/Webacy-Prod/mega-contracts

...View All

COMMITS
c0c2768c3dd1e802a33ccba4bfc4f8cdfa4649c5

...View All

20
Total Findings

17
Resolved

2
Mitigated

0
Partially Resolved

1
Acknowledged

0
Declined

0
Unresolved

https://github.com/Webacy-Prod/mega-contracts

TABLE OF CONTENTS WEBACY (AUDIT)

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

GLOBAL-01 : Centralization Risks

WCP-01 : Centralized Control of Contract Upgrade

WCP-02 : Function Calls User-Provided Addresses With No Access Control Modifier

WCP-03 : Dangerous Usage of `tx.origin`

ASW-01 : Missing checks on provided `uid`

ASW-02 : Missing checks on `claimExpiryTime`

MWC-01 : Incorrect Fee Handling

TAW-01 : Ineffective Balance Check

WCP-04 : `Ischarity` not checked when calling `transferUnclaimedAssets`

WCP-05 : Incorrect Allowance Check

ASW-03 : Missing Input Validation

MWC-03 : Missing Blacklist Address Check

WCP-06 : Missing checks on approved token amount

WCP-07 : Check Effect Interaction Pattern Violated

ASW-04 : Discussion on function `transferUnclaimedAssets`

ASW-05 : Incorrect Claimable Assets Calculation

GLOBAL-02 : Usage of transfer pool

GLOBAL-03 : Lack of Unit-test File

WCP-08 : Questionable Implementation of Function `checkIfUIDExists`

WCP-09 : Redundant Checks

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

TABLE OF CONTENTS WEBACY (AUDIT)

Disclaimer

TABLE OF CONTENTS WEBACY (AUDIT)

CODEBASE WEBACY (AUDIT)

Repository

https://github.com/Webacy-Prod/mega-contracts

Commit

c0c2768c3dd1e802a33ccba4bfc4f8cdfa4649c5

CODEBASE WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts

AUDIT SCOPE WEBACY (AUDIT)

19 files audited 2 files with Acknowledged findings 3 files with Mitigated findings 1 file with Resolved findings

13 files without findings

ID File SHA256 Checksum

ASW projects/Webacy/contracts/AssetsStore.sol
eac945dec58c890f3b5f3d01a602ff22e7706ea

9c56d0fd15b8ded7e9291cae7

MWC projects/Webacy/contracts/Member.sol
f2d90b275aa6a9b3df88b438b321499bfa12af

66a2ef7eb75bc4c0a065bb45cb

ASF
projects/Webacy/contracts/factories/AssetStoreFact

ory.sol

c29d14831ee4d957e6986325cedf965fc3d59f

4f6d2737e8cdcd479234066d08

PDW projects/Webacy/contracts/ProtocolDirectory.sol
6413f1f855b00adea1ca27e03b401d9573416

68e879f4923c7e8a74459072689

RCW projects/Webacy/contracts/RelayerContract.sol
359f3f9b63f2818f72aadcbd611e9bf5c850bd1

efaa35271f8a0bbc473fe8077

TAW
projects/Webacy/contracts/libraries/TokenActions.s

ol

16390211a16ee3fc6f25544e98c0b20188822

b53f32c3fdfafd4181d1c5d106b

IAS
projects/Webacy/contracts/interfaces/IAssetStore.s

ol

46615376d4aaf5c0930c55f1181b0e3e6af7e4

68fbe6440f04981f9b142fd880

IAF
projects/Webacy/contracts/interfaces/IAssetStoreFa

ctory.sol

6c6247e4cbb800caed7c069eccd4be5b764a0

adc1d9bc914bcaeea7ef98e7379

IMW projects/Webacy/contracts/interfaces/IMember.sol
2400d06918f78690e52fd7c6a4e712e7a37c9

b1d78e7dede46c5215a6d46ef76

IPD
projects/Webacy/contracts/interfaces/IProtocolDirec

tory.sol

ebbee951f3b1c3a6e602a595c1f2b063d0ec3

78768cecc860fbd0471c0509f82

ASC
projects/Webacy/contracts/structs/ApprovalsStruct.

sol

1eb4210ac664eead9750f78abc76f9258145f5

e0353f19aff26762b8f5de342b

BAS
projects/Webacy/contracts/structs/BackupApproval

Struct.sol

15589b8892dbe71f597fcb9755853c548cec90

1181ae135b6adc427967458c25

BSW
projects/Webacy/contracts/structs/BeneficiaryStruc

t.sol

4ab8307375271b2b2743f962a8edf6ef439075

185ce8e5501456e6abbbf8e6a7

AUDIT SCOPE WEBACY (AUDIT)

ID File SHA256 Checksum

MSW
projects/Webacy/contracts/structs/MemberStruct.so

l

f40fbad0062342866e030c5fa2f361aadfcea0a

752febbf4b43f40b37f8fcc32

TSW projects/Webacy/contracts/structs/TokenStruct.sol
02bff0a6b895f84576819b391aa2901932b08c

1d152bbcb39c5d2c9fc09bedf4

ERC projects/Webacy/contracts/utils/ERC1155.sol
b87641627e17432bcad3a6f494a46ffab01bca

0c01092687a862d094dcd08659

ERW projects/Webacy/contracts/utils/ERC20.sol
e4a33145b286445902263c3e47fc9b9745f1f9

840f89d2932be6cff08c2ae88e

ERK projects/Webacy/contracts/utils/ERC721.sol
fba95a8b473698953eba5c1380384b962116c

b37aad863aabdb833be07219093

PNF projects/Webacy/contracts/utils/ParadigmNFT.sol
df71cb8ea02916dc15ca13b1afb4ff5ea441758

1a96825cbf1b0ace85481cf60

AUDIT SCOPE WEBACY (AUDIT)

APPROACH & METHODS WEBACY (AUDIT)

This report has been prepared for Webacy (Audit) to discover issues and vulnerabilities in the source code of the Webacy

(Audit) project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS WEBACY (AUDIT)

FINDINGS WEBACY (AUDIT)

This report has been prepared to discover issues and vulnerabilities for Webacy (Audit). Through this audit, we have

uncovered 20 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-01 Centralization Risks
Centralization /

Privilege
Major Mitigated

WCP-01
Centralized Control Of Contract

Upgrade

Centralization /

Privilege
Major Mitigated

WCP-02

Function Calls User-Provided

Addresses With No Access Control

Modifier

Centralization /

Privilege
Major Acknowledged

WCP-03 Dangerous Usage Of tx.origin Volatile Code Major Resolved

ASW-01 Missing Checks On Provided uid Logical Issue Medium Resolved

ASW-02
Missing Checks On

claimExpiryTime
Logical Issue Medium Resolved

MWC-01 Incorrect Fee Handling Logical Issue Medium Resolved

TAW-01 Ineffective Balance Check Logical Issue Medium Resolved

WCP-04
Ischarity Not Checked When

Calling transferUnclaimedAssets
Logical Issue Medium Resolved

WCP-05 Incorrect Allowance Check Logical Issue Medium Resolved

FINDINGS WEBACY (AUDIT)

20
Total Findings

0
Critical

4
Major

6
Medium

4
Minor

6
Informational

ID Title Category Severity Status

ASW-03 Missing Input Validation Logical Issue Minor Resolved

MWC-03 Missing Blacklist Address Check Control Flow Minor Resolved

WCP-06
Missing Checks On Approved Token

Amount
Logical Issue Minor Resolved

WCP-07
Check Effect Interaction Pattern

Violated
Logical Issue Minor Resolved

ASW-04
Discussion On Function

transferUnclaimedAssets
Logical Issue Informational Resolved

ASW-05 Incorrect Claimable Assets Calculation Logical Issue Informational Resolved

GLOBAL-02 Usage Of Transfer Pool Logical Issue Informational Resolved

GLOBAL-03 Lack Of Unit-Test File Coding Style Informational Resolved

WCP-08
Questionable Implementation Of

Function checkIfUIDExists
Logical Issue Informational Resolved

WCP-09 Redundant Checks Logical Issue Informational Resolved

FINDINGS WEBACY (AUDIT)

GLOBAL-01 CENTRALIZATION RISKS

Category Severity Location Status

Centralization / Privilege Major Mitigated

Description

In the contract Member the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority.

Authenticated Role

Function

Function
_owner

addBlacklist

removeBlacklist

In the contract ProtocolDirectory the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority.

GLOBAL-01 WEBACY (AUDIT)

Authenticated Role

Function

Function

Function Calls

Function

Function

_owner

setTransferPool

setMemberContract

setAddress

setAssetStoreFactory

setRelayerContract

In the contract RelayerContract the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority.

Function State VariablesAuthenticated Role

setRelayerAddress relayerAddress_owner

In the contract RelayerContract the role relayer has authority over the following functions:

function setApprovalActiveForUID()

function transferUnclaimedAssets()

function triggerAssetsForCharity()

Any compromise to the relayer account may allow the hacker to take advantage of this authority.

In the contract ERC721 the role owner has authority over the functions shown in the diagram below. Any compromise to

the owner account may allow the hacker to take advantage of this authority.

GLOBAL-01 WEBACY (AUDIT)

Authenticated Role Function

Function Calls

Function Calls

Function Calls

owner approve

_approve

isApprovedForAll

_msgSender

In the contract MultiFaucet the role superOperators has authority over the functions shown in the diagram below. Any

compromise to the superOperators account may allow the hacker to take advantage of this authority.

GLOBAL-01 WEBACY (AUDIT)

Function

State Variables

Authenticated Role

Function

Function State Variables

Function

Function

updateDripAmounts

ETH_AMOUNT

NFT_COUNT

DAI_AMOUNT

WETH_AMOUNT

superOperators

updateSuperOperator

updateTokenURI

drain

updateApprovedOperator

URI

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

GLOBAL-01 WEBACY (AUDIT)

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Webacy team]: We will implement time-lock on the smart contracts using open-zeppelin defender and there is already

existing multi-sign ownership of the smart contracts with 2/4 approvals required for authorizing a transaction.

Certik: Based on our on-chain investigations, Protocol Directory Contract, Member Proxy Contract, Membership Factory

Proxy Contract, assetsStore Proxy Contract, Relayer Contract, Whitelist Users Proxy Contract, and Blacklist Users Proxy

Contract all have the same multi-sign ownership 0x435cb8f189FBD3D98ab07dD213442aEbA2b0D622. We advise the team

to provide more details about the multi-sign ownership.

GLOBAL-01 WEBACY (AUDIT)

WCP-01 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization /

Privilege
Major

projects/Webacy/contracts/AssetsStore.sol: 38; projects/Weba

cy/contracts/Member.sol: 43; projects/Webacy/contracts/Proto

colDirectory.sol: 19; projects/Webacy/contracts/RelayerContra

ct.sol: 24; projects/Webacy/contracts/factories/AssetStoreFact

ory.sol: 23

Mitigated

Description

The attached contracts are upgradeable contracts, the owner can upgrade the contract without the community's

commitment. If an attacker compromises the account, he can change the implementation of the contract and drain tokens

from the contract.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

WCP-01 WEBACY (AUDIT)

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Webacy team]: We will implement time-lock on the smart contracts using open-zeppelin defender and there is already

existing multi-sign ownership of the smart contracts with 2/4 approvals required for authorizing a transaction.

Certik: Based on our on-chain investigations, Protocol Directory Contract, Member Proxy Contract, Membership Factory

Proxy Contract, assetsStore Proxy Contract, Relayer Contract, Whitelist Users Proxy Contract, and Blacklist Users Proxy

Contract all have the same multi-sign ownership 0x435cb8f189FBD3D98ab07dD213442aEbA2b0D622. We advise the team

to provide more details about the multi-sign ownership.

WCP-01 WEBACY (AUDIT)

WCP-02 FUNCTION CALLS USER-PROVIDED ADDRESSES WITH
NO ACCESS CONTROL MODIFIER

Category Severity Location Status

Centralization /

Privilege
Major

projects/Webacy/contracts/AssetsStore.sol; project

s/Webacy/contracts/Member.sol
Acknowledged

Description

User stored ERC20, ER721, and ERC1155 token addresses in approvals after calling function

storeAssetsAndBackUpApprovals , storeAssetsApprovals in AssetsStore contract and function

storeBackupAssetsApprovals in Member contract. Those addresses will later be used in claiming assets.

Calling a user-provided address is dangerous, especially in a public function with no access control restriction. An attacker

could deploy a malicious contract and use the vulnerable function to trigger a call to the malicious contract, potentially

stealing user funds or causing other serious damages.

Recommendation

We recommend several different types of mitigations, depending on the context:

1. Remove the vulnerable function, or restrict what addresses can be called from it.

2. Include access control mechanisms, whether it be through making the function internal or restricting which

contracts can call this function.

Alleviation

[Webacy team]: We have introduced a new modifier called onlyMember that checks and validates if the msg.sender is a

onChain Member or not. Allow sufficient access control to only allow members to access the function.

Certik: The new modifier onlyMember is redundant since the original check can perform the same functionality. The

recommended approach here is to use a white list to store all tokens. Thus only allowed external token addresses can be

called.

[Webacy team]: We will be implementing a whitelist to store all tokens in the near future.

WCP-02 WEBACY (AUDIT)

WCP-03 DANGEROUS USAGE OF tx.origin

Category Severity Location Status

Volatile

Code
Major

projects/Webacy/contracts/AssetsStore.sol; projects/Webacy/contracts/M

ember.sol; projects/Webacy/contracts/factories/AssetStoreFactory.sol
Resolved

Description

tx.origin check will be no longer valid after EIP-3074 is added in the coming months. EIP3074 introduces two EVM

instructions AUTH and AUTHCALL. The first sets a context variable authorized based on an ECDSA signature. The second

sends a call as authorized. This essential delegates control of the EOA to a smart contract. This means there will be a way

for smart contracts to send transactions in the context of an Externally Owned Account, thus bypassing this check.

Also tx.origin is widely discouraged as there are possible phishing attempts.

For a contract, the tx.origin is not transparent. In a simple call chain A->B->C->D, inside D msg.sender will be C, and

tx.origin will be A. If the origin is really desired in D, then each of the functions in the contracts B, C, D could take an extra

parameter to propagate the origin: A would pass its address (this) to B, B would pass the value to C, and C would pass it to

D. tx.origin based protection can be abused by a malicious contract if a legitimate user interacts with the malicious

contract. Hence it's not recommended to use tx.origin for authorization in solidity documentation. refer to:

https://docs.soliditylang.org/en/v0.7.0/security-considerations.html#tx-origin

Recommendation

We do not recommend the team use tx.origin to get the user info as it is vulnerable to phishing attacks.

Alleviation

[Webacy team]: The use of tx.origin has been replaced with msg.sender in order to capture address information of function

executor.

Moreover, we have added _memberAddress as an additional parameter to be passed into the function call for both

storeBackupAssetsApprovals() and storeAssetsApprovals() in order to allow internal calls from unifying function

storeAssetsAndBackUpApprovals()

WCP-03 WEBACY (AUDIT)

https://docs.soliditylang.org/en/v0.7.0/security-considerations.html#tx-origin

ASW-01 MISSING CHECKS ON PROVIDED uid

Category Severity Location Status

Logical Issue Medium projects/Webacy/contracts/AssetsStore.sol: 542 Resolved

Description

The function forgets to check if the approval is associated with the provided uid and just simply sets MemberApprovals[uid]

[i].claimed to true when MemberApprovals[uid][i].approvalId is equal to _beneficiaryApproval.approvalId .

The approvals in BeneficiaryClaimableAsset[_charityBeneficiaryAddress] might not all belong to the same uid.

Recommendation

We advise the team to check if BeneficiaryClaimableAsset[_charityBeneficiaryAddress._uid is the same as the input

parameter _uid .

Alleviation

[Webacy team]: The UID check has been added to the function implementation. Fixed in commit:

https://github.com/Webacy-Prod/mega-contracts/commit/6cd716a678308df450236f271747ef8c9832fadc.

ASW-01 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/6cd716a678308df450236f271747ef8c9832fadc

ASW-02 MISSING CHECKS ON claimExpiryTime

Category Severity Location Status

Logical Issue Medium projects/Webacy/contracts/AssetsStore.sol: 429, 521 Resolved

Description

The function claimAsset and sendAssetsToCharity forget to check if the claim has expired.

Recommendation

We advise the team to add related checks.

Alleviation

[Webacy team]: Necessary claimable functionality and tests for timebased checks have been added to both the functions

and test suite. Fixed in https://github.com/Webacy-Prod/mega-

contracts/commit/6bef7d49b46fd70f967b7cdf20bac4f949176e76.

Certik: The checks here should require claimExpiryTime to be larger than current timestamp.

[Webacy team]: Fixed in https://github.com/Webacy-Prod/mega-

contracts/commit/f68854a6e44c70d22360b1c866bf12016074a149.

ASW-02 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/6bef7d49b46fd70f967b7cdf20bac4f949176e76
https://github.com/Webacy-Prod/mega-contracts/commit/f68854a6e44c70d22360b1c866bf12016074a149

MWC-01 INCORRECT FEE HANDLING

Category Severity Location Status

Logical Issue Medium projects/Webacy/contracts/Member.sol: 635~636 Resolved

Description

Based on the context, the webacyfees should be transferred to

IProtocolDirectory(directoryContract).getTransferPool() instead of _backUpWallet .

Recommendation

We advise the team to provide related changes in the contract.

Alleviation

[Webacy team]: This issue has been fixed and the transfer is now to getTransferPool(). Fixed in commit:

https://github.com/Webacy-Prod/mega-contracts/commit/5b0543cc4703923cca8c503b46449fd6c238f94c.

MWC-01 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/5b0543cc4703923cca8c503b46449fd6c238f94c

TAW-01 INEFFECTIVE BALANCE CHECK

Category Severity Location Status

Logical

Issue
Medium

projects/Webacy/contracts/libraries/TokenActions.sol: 47, 53~56, 65~

68
Resolved

Description

This function is used in AssetsStore and Member contracts to check if the wallet has enough balance. However, the input

parameter tokenAmount here actually represents the percentage of allocated tokens in the wallet balance. The function

checkAssetContract just uses tokenAmount to compare with the balance, which makes the check meaningless.

Furthermore, the real allocated amount is calculated when setting the approval to active. The calculation in

setApprovalActive uses the current balance of the approved wallet, which makes the check unnecessary in the other

aspect.

Recommendation

We advise the team to review the original design and recheck the implementation.

Alleviation

[Webacy Team]: We are using percentages for crypto-will, and this has been implemented for backups as well in order to

avoid confusion in terms of value calculation. As regards the error mentioned above this has been fixed. Fixed in commit:

https://github.com/Webacy-Prod/mega-contracts/commit/92b43238815c0b7c3043cb3f6357500ed11d404b and

https://github.com/Webacy-Prod/mega-contracts/commit/b500529e9cceab8c49aaf4c96f4a14d076193eea.

Certik: All changes have been implemented except the function editBackUp .

Update: Fixed in https://github.com/Webacy-Prod/mega-

contracts/commit/781aa8660a7ab4f4bee30273adca5b3a54071e61.

TAW-01 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/92b43238815c0b7c3043cb3f6357500ed11d404b
https://github.com/Webacy-Prod/mega-contracts/commit/b500529e9cceab8c49aaf4c96f4a14d076193eea
https://github.com/Webacy-Prod/mega-contracts/commit/781aa8660a7ab4f4bee30273adca5b3a54071e61

WCP-04 Ischarity NOT CHECKED WHEN CALLING

transferUnclaimedAssets

Category Severity Location Status

Logical

Issue
Medium

projects/Webacy/contracts/AssetsStore.sol: 364, 521; projects/Webacy/

contracts/RelayerContract.sol: 84, 116
Resolved

Description

The function sendAssetsToCharity in the AssetsStore contract can only be called by the relayer contract and will send

assets to the charity beneficiary based on the approval. In the relayer contract, the function triggerAssetsForCharity

which triggers the sendAssetsToCharity function, can also only be called by the relayer. The relayer is an external address

set by the owner after calling the function setRelayerAddress . This design provides the relayer a chance to transfer assets

from the approved wallet to the transfer pool when the asset is supposed to transfer to the charity.

The relayer can decide not to call function triggerAssetsForCharity and wait for the claim to be expired. Then he can call

function transferUnclaimedAssets to transfer the asset since the function doesn’t check if the beneficiary in this approval

is a charity.

Recommendation

We advise the team to limit the usage of transferUnclaimedAssets by checking _approval[i].beneficiary.Ischarity .

Alleviation

[Webacy team]: We have added an additional conditional in the transferUnclaimedAssets in order to ensure that

charities are avoided during the transfer of unclaimed assets.

WCP-04 WEBACY (AUDIT)

WCP-05 INCORRECT ALLOWANCE CHECK

Category Severity Location Status

Logical

Issue
Medium

projects/Webacy/contracts/AssetsStore.sol: 550~552; projects/Webac

y/contracts/Member.sol: 621
Resolved

Description

The check on line 550 in AssetsStore contract compares the allowance from the approved wallet to the relayer and the

_tokenAmount , while the token transfer on line 551 is unrelated to the relayer.

The allowance on line 621 in Member contract refers to the allowance from the approved wallet to the Member contract,

while the following token transfers on line 627-632 is unrelated to the Member contract.

Recommendation

We advise the team to review the original design, and perform related changes.

Alleviation

[Webacy Team]: This issue has been resolved for asset store and the allowance check for spender has changed to the

assetstore contract similar to the issue raised for member contract. The design is intended as the approvals for these tokens

were done against assetstore and member contract and the spenders are these contracts for which the user has previously

done approvals for. Moreover, the allowance is calculated based on what the contract has allowance for to spend and

accordingly transferred. Do let us know if there are any more clarifications needed. Fixed in https://github.com/Webacy-

Prod/mega-contracts/commit/ff291d27a388b655772206c7dc1a82c200ccdd60.

Certik: Both mentioned allowance is not set in the contract, which causes confusion. The allowance check in asset store

contract is removed.

WCP-05 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/ff291d27a388b655772206c7dc1a82c200ccdd60

ASW-03 MISSING INPUT VALIDATION

Category Severity Location Status

Logical Issue Minor projects/Webacy/contracts/AssetsStore.sol: 190~191, 511~512 Resolved

Description

The contract is missing checks to make sure those arrays all have the same length. Right now the checks can only make

sure they have the same length in pairs.

Recommendation

We recommend adding the missing checks.

Alleviation

[Webacy Team]: We have changed the conditional from pair check to obtain one of the lengths of the parameters passed

and do a cross check with other parameters which hopefully will cover the missing checks. Fixed in

https://github.com/Webacy-Prod/mega-contracts/commit/b86f6f04cb9fa47a46f45c4e942dd9ecbba0ed99.

ASW-03 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/b86f6f04cb9fa47a46f45c4e942dd9ecbba0ed99

MWC-03 MISSING BLACKLIST ADDRESS CHECK

Category Severity Location Status

Control Flow Minor projects/Webacy/contracts/Member.sol: 282, 295, 502, 745, 779 Resolved

Description

The functions addWallet , _addWallet , storeBackupAssetsApprovals , editBackUp , and editAllBackUp all don't

have a blacklist address check.

Recommendation

We advise the team to add the related checks.

Alleviation

[Webacy Team]: Fixed in https://github.com/Webacy-Prod/mega-

contracts/commit/8d206b987606e4efc84d7454e6312fdadff5642f. The backup wallet will be checked before execute panic.

MWC-03 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/8d206b987606e4efc84d7454e6312fdadff5642f

WCP-06 MISSING CHECKS ON APPROVED TOKEN AMOUNT

Category Severity Location Status

Logical

Issue
Minor

projects/Webacy/contracts/AssetsStore.sol; projects/Webacy/contracts/

Member.sol
Resolved

Description

The sum of the approved token amount among all approvals may exceed the approved wallet balance since there are no

checks to ensure it. If so, the beneficiary who claims later might not have the chance to get what he is supposed to claim.

Recommendation

We advise the team to review this design and perform related changes.

Alleviation

[Webacy Team]: These balance checks are done in the Token Actions Library to check if the user has sufficient balance and

allowance in order to this transfer, please check the library.

The sum of individual tokens is not needed to be checked as we are only dealing with individual tokens at a time from the

dapp. However, we will add a check in the contracts to ensure that only individual tokens are passed.

WCP-06 WEBACY (AUDIT)

WCP-07 CHECK EFFECT INTERACTION PATTERN VIOLATED

Category Severity Location Status

Logical

Issue
Minor

projects/Webacy/contracts/AssetsStore.sol: 364~421, 439~468, 542~565;

projects/Webacy/contracts/Member.sol: 609~723
Resolved

Description

The order of external call/transfer and storage manipulation must follow the check-effect-interaction pattern.

Recommendation

We advise the client to check if storage manipulation is before the external call/transfer operation.LINK

Alleviation

[Webacy Team]: This issue has been fixed and now follows the check-effect interaction pattern.

Certik: Although the commit description mentions WCP-07, the actual fixed repo is https://github.com/Webacy-Prod/mega-

contracts/commit/ff291d27a388b655772206c7dc1a82c200ccdd60 instead of https://github.com/Webacy-Prod/mega-

contracts/commit/d70052030448e8bcfc1580d179172e051ab7a1d3.

Update: Fixed in commit https://github.com/Webacy-Prod/mega-

contracts/commit/c828f243e3e7d7c7d316824ea914574ec2e29a1a.

WCP-07 WEBACY (AUDIT)

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html
https://github.com/Webacy-Prod/mega-contracts/commit/ff291d27a388b655772206c7dc1a82c200ccdd60
https://github.com/Webacy-Prod/mega-contracts/commit/d70052030448e8bcfc1580d179172e051ab7a1d3
https://github.com/Webacy-Prod/mega-contracts/commit/c828f243e3e7d7c7d316824ea914574ec2e29a1a

ASW-04 DISCUSSION ON FUNCTION transferUnclaimedAssets

Category Severity Location Status

Logical Issue Informational projects/Webacy/contracts/AssetsStore.sol: 379~382 Resolved

Description

The function transferUnclaimedAssets transfers _tokenAmount tokens to the transfer pool instead of just using

BeneficiaryClaimableAsset[_charityBeneficiaryAddress][i].approvedTokenAmount . The _tokenAmount is calculated

with the current wallet balance and the approvedTokenAmount is calculated with the balance when setting the approval to

be active.

Recommendation

We would advise the team to check if it's an intended design.

Alleviation

[Webacy Team]: Yes this as intended design, as there can be difference in values during claiming times which can be less

than actual approved amount. So in order to calculate the latest amount that the wallet contains to ensure a successful

transaction the wallet balance is calculated when the approval is set to active.

ASW-04 WEBACY (AUDIT)

ASW-05 INCORRECT CLAIMABLE ASSETS CALCULATION

Category Severity Location Status

Logical Issue Informational projects/Webacy/contracts/AssetsStore.sol: 574 Resolved

Description

In the documentation, the function getClaimableAssets allows users to get a list of all claimable assets. However, the list

doesn't exclude all expired assets.

Recommendation

We advise the team to restrict the list to claimable assets only.

Alleviation

[Webacy Team]: We have mitigated this issue. Fixed in https://github.com/Webacy-Prod/mega-

contracts/commit/e95f01a3f754157456b8b3b8575b4243886bb6d2.

ASW-05 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/e95f01a3f754157456b8b3b8575b4243886bb6d2

GLOBAL-02 USAGE OF TRANSFER POOL

Category Severity Location Status

Logical Issue Informational Resolved

Description

In the project implementation, the transfer pool will accept the webacy fees and unclaimed assets from users. However, the

usage of funds in transfer pool is not clear.

Recommendation

We advise the team to confirm this design and provide more illustrations on this.

Alleviation

[Webacy Team]: The usage of funds is to obtain the necessary charges and fees related to running Webacy functionality

and operations. Transferring unclaimed funds is claimed when beneficiaries that are made to claim a users assets does not

claim the users assets in due time and the assets are no longer of interest or value and is stuck inside the owners wallet,

once the time period expires. Therefore, it is considered that the assets are unclaimed and transferred to the Webacy wallet.

GLOBAL-02 WEBACY (AUDIT)

GLOBAL-03 LACK OF UNIT-TEST FILE

Category Severity Location Status

Coding Style Informational Resolved

Description

Using unit tests to test smart contracts is one of the best ways to identify potential logic errors and security vulnerabilities in

the smart contract. The unit test files in this project only contain the happy path tests.

Recommendation

We advise the team to add more test cases to cover more edge cases and improve the test coverage.

Alleviation

[Webacy Team]: We have added more tests cases in order to improve the test coverage as well as cover more path tests

that have not previously been covered.

GLOBAL-03 WEBACY (AUDIT)

WCP-08 QUESTIONABLE IMPLEMENTATION OF FUNCTION
checkIfUIDExists

Category Severity Location Status

Logical

Issue
Informational

projects/Webacy/contracts/AssetsStore.sol: 197~199; projects/We

bacy/contracts/Member.sol: 164, 164
Resolved

Description

The implementation of function checkIfUIDExists only checks if the _walletAddress has been added to any members.

The implementation doesn't match the function name and also affects the project logic.

When the function checkIfUIDExists is used as a check in function storeAssetsApprovals of AssetsStore contract,

function storeAssetsApprovals then calls createMember in member contract to create a new member with the unique

uid. If the caller (wallet) has not been added to any members while the member has already been created, the function would

revert.

Recommendation

We advise the team to change the implementation of function checkIfUIDExists or change the function name.

Alleviation

[Webacy Team]: Function name has been changed to checkIfWalletExists. Fixed in https://github.com/Webacy-Prod/mega-

contracts/commit/d70052030448e8bcfc1580d179172e051ab7a1d3.

WCP-08 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/d70052030448e8bcfc1580d179172e051ab7a1d3

WCP-09 REDUNDANT CHECKS

Category Severity Location Status

Logical

Issue
Informational

projects/Webacy/contracts/AssetsStore.sol: 435~436; projects/We

bacy/contracts/Member.sol: 337~343
Resolved

Description

In the function claimAsset of AssetsStore contract, the aforementioned statement is always true since the beneficiary can

not be changed after it's stored.

In the function _addBackupWallet of Member contract, If the check on line 325 doesn’t revert, checkIfUIDExists(_user)

must return true and _member.wallets.length can not be 0.

Recommendation

We advise removing the aforementioned check.

Alleviation

[Webacy Team]: We have removed the aforementioned check. Fixed in https://github.com/Webacy-Prod/mega-

contracts/commit/1f8ebb061f34c4d532bb55f5c85e4a95501d20a8.

WCP-09 WEBACY (AUDIT)

https://github.com/Webacy-Prod/mega-contracts/commit/1f8ebb061f34c4d532bb55f5c85e4a95501d20a8

FORMAL VERIFICATION WEBACY (AUDIT)

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero Function transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-self Function transfer Succeeds on Admissible Self Transfers

erc20-transfer-succeed-normal Function transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-correct-amount Function transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-change-state Function transfer Has No Unexpected State Changes

erc20-transfer-correct-amount-self Function transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-exceed-balance Function transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-recipient-overflow Function transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-false
If Function transfer Returns false , the Contract State Has Not Been

Changed

erc20-transfer-never-return-false Function transfer Never Returns false

FORMAL VERIFICATION WEBACY (AUDIT)

Property Name Title

erc20-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-succeed-normal Function transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-correct-amount
Function transferFrom Transfers the Correct Amount in Non-self

Transfers

erc20-transferfrom-correct-amount-self Function transferFrom Performs Self Transfers Correctly

erc20-transferfrom-succeed-self Function transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-fail-exceed-balance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Balance

erc20-transferfrom-correct-allowance Function transferFrom Updated the Allowance Correctly

erc20-transferfrom-change-state Function transferFrom Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-allowance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Allowance

erc20-totalsupply-succeed-always Function totalSupply Always Succeeds

erc20-transferfrom-false
If Function transferFrom Returns false , the Contract's State Has Not

Been Changed

erc20-transferfrom-fail-recipient-overflow Function transferFrom Prevents Overflows in the Recipient's Balance

erc20-transferfrom-never-return-false Function transferFrom Never Returns false

erc20-totalsupply-correct-value
Function totalSupply Returns the Value of the Corresponding State

Variable

erc20-totalsupply-change-state Function totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always Function balanceOf Always Succeeds

erc20-balanceof-correct-value Function balanceOf Returns the Correct Value

erc20-balanceof-change-state Function balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always Function allowance Always Succeeds

erc20-allowance-correct-value Function allowance Returns Correct Value

FORMAL VERIFICATION WEBACY (AUDIT)

Property Name Title

erc20-allowance-change-state Function allowance Does Not Change the Contract's State

erc20-approve-revert-zero Function approve Prevents Giving Approvals For the Zero Address

erc20-approve-succeed-normal Function approve Succeeds for Admissible Inputs

erc20-approve-correct-amount Function approve Updates the Approval Mapping Correctly

erc20-approve-change-state Function approve Has No Unexpected State Changes

erc20-approve-false
If Function approve Returns false , the Contract's State Has Not Been

Changed

erc20-approve-never-return-false Function approve Never Returns false

Verification of ERC-721 Compliance

We verified the properties of the public interface of those token contracts that implement the ERC-721 interface without

pause.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc721-supportsinterface-correct-erc721
Function supportsInterface Signals that the Contract Supports

ERC721

erc721-balanceof-succeed-normal Function balanceOf Succeeds on Admissible Inputs

erc721-balanceof-correct-count Function balanceOf Returns the Correct Value

erc721-balanceof-revert Function balanceOf Fails on the Zero Address

erc721-balanceof-no-change-state Function balanceOf Does Not Change the Contract's State

erc721-transferfrom-succeed-normal Function transferFrom Succeeds on Admissible Inputs

erc721-ownerof-succeed-normal Function ownerOf Succeeds For Valid Tokens

erc721-ownerof-correct-owner Function ownerOf Returns the Correct Owner

erc721-ownerof-revert Function ownerOf Fails On Invalid Tokens

erc721-ownerof-no-change-state Function ownerOf Does Not Change the Contract's State

erc721-getapproved-succeed-normal Function getApproved Succeeds For Valid Tokens

FORMAL VERIFICATION WEBACY (AUDIT)

Property Name Title

erc721-getapproved-correct-value Function getApproved Returns Correct Approved Address

erc721-isapprovedforall-succeed-normal Function isApprovedForAll Always Succeeds

erc721-getapproved-change-state Function getApproved Does Not Change the Contract's State

erc721-getapproved-revert-zero Function getApproved Fails on Invalid Tokens

erc721-isapprovedforall-correct Function isApprovedForAll Returns Correct Approvals

erc721-isapprovedforall-change-state Function isApprovedForAll Does Not Change the Contract's State

erc721-isapprovedforall-correct-false Function isApprovedForAll Returns Non-Approval For Invalid Inputs

erc721-approve-succeed-normal Function approve Return for Admissible Inputs

erc721-approve-set-correct Function approve Sets Approve

erc721-approve-revert-not-allowed Function approve Prevents Unpermitted Approvals

erc721-setapprovalforall-succeed-normal Function setApprovalForAll Return for Admissible Inputs

erc721-approve-revert-invalid-token Function approve Fails For Calls with Invalid Tokens

erc721-approve-change-state Function approve Has No Unexpected State Changes

erc721-setapprovalforall-set-correct Function setApprovalForAll Approves Operator

erc721-setapprovalforall-multiple Function setApprovalForAll Can Set Multiple Operators

erc721-setapprovalforall-change-state Function setApprovalForAll Has No Unexpected State Changes

erc721-setapprovalforall-revert-zero
Function setApprovalForAll Prevents Giving Approvals to the Zero

Address

erc721-transferfrom-correct-increase
Function transferFrom Transfers the Complete Token in Non-self

Transfers

erc721-transferfrom-correct-one-token-self Function transferFrom Performs Self Transfers Correctly

erc721-transferfrom-correct-approval Function transferFrom Updates the Approval Correctly

erc721-transferfrom-correct-owner-from Function transferFrom Removes Token Ownership of From

erc721-transferfrom-correct-owner-to Function transferFrom Transfers Ownership

FORMAL VERIFICATION WEBACY (AUDIT)

Property Name Title

erc721-transferfrom-correct-balance Function transferFrom Sum of Balances is Constant

erc721-transferfrom-correct-state-balance
Function transferFrom Keeps Balances Constant Except for From

and To

erc721-transferfrom-correct-state-owner Function transferFrom Has Expected Ownership Changes

erc721-transferfrom-correct-state-approval Function transferFrom Has Expected Approval Changes

erc721-transferfrom-revert-invalid Function transferFrom Fails for Invalid Tokens

erc721-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc721-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

erc721-supportsinterface-metadata
Function supportsInterface Returns that Interface ERC721Metadata

Implemented

erc721-supportsinterface-succeed-always Function supportsInterface Always Succeeds

erc721-transferfrom-revert-not-owned Function transferFrom Fails if From Is Not Token Owner

erc721-supportsinterface-correct-erc165
Function supportsInterface Signals that the Contract Supports

ERC165

erc721-supportsinterface-correct-false Function supportsInterface Returns False for Id 0xffffffff

erc721-supportsinterface-no-change-state Function supportsInterface Does Not Change the Contract's State

erc721-transferfrom-revert-exceed-approval Function transferFrom Fails for Token Transfers without Approval

Verification Results

For the following contracts, model checking established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract WebacyToken (projects/Webacy/contracts/utils/ERC20.sol) In
Commit b62f7ff5f75d7202a8d14978da8c7dd0183204de

FORMAL VERIFICATION WEBACY (AUDIT)

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-self True

erc20-transfer-succeed-normal True

erc20-transfer-correct-amount True

erc20-transfer-change-state True

erc20-transfer-correct-amount-self True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-succeed-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

FORMAL VERIFICATION WEBACY (AUDIT)

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract WebacyNFT (projects/Webacy/contracts/utils/ERC721.sol) In Commit
b62f7ff5f75d7202a8d14978da8c7dd0183204de

Verification of ERC-721 Compliance

Detailed results for function supportsInterface

Property Name Final Result Remarks

erc721-supportsinterface-correct-erc721 True

erc721-supportsinterface-metadata True

erc721-supportsinterface-succeed-always True

erc721-supportsinterface-correct-erc165 True

erc721-supportsinterface-correct-false True

erc721-supportsinterface-no-change-state True

Detailed results for function balanceOf

Property Name Final Result Remarks

erc721-balanceof-succeed-normal True

erc721-balanceof-correct-count True

erc721-balanceof-revert True

erc721-balanceof-no-change-state True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function transferFrom

Property Name Final Result Remarks

erc721-transferfrom-succeed-normal True

erc721-transferfrom-correct-increase True

erc721-transferfrom-correct-one-token-self True

erc721-transferfrom-correct-approval True

erc721-transferfrom-correct-owner-from True

erc721-transferfrom-correct-owner-to True

erc721-transferfrom-correct-balance True

erc721-transferfrom-correct-state-balance True

erc721-transferfrom-correct-state-owner True

erc721-transferfrom-correct-state-approval True

erc721-transferfrom-revert-invalid True

erc721-transferfrom-revert-from-zero True

erc721-transferfrom-revert-to-zero True

erc721-transferfrom-revert-not-owned True

erc721-transferfrom-revert-exceed-approval True

Detailed results for function ownerOf

Property Name Final Result Remarks

erc721-ownerof-succeed-normal True

erc721-ownerof-correct-owner True

erc721-ownerof-revert True

erc721-ownerof-no-change-state True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function getApproved

Property Name Final Result Remarks

erc721-getapproved-succeed-normal True

erc721-getapproved-correct-value True

erc721-getapproved-change-state True

erc721-getapproved-revert-zero True

Detailed results for function isApprovedForAll

Property Name Final Result Remarks

erc721-isapprovedforall-succeed-normal True

erc721-isapprovedforall-correct True

erc721-isapprovedforall-change-state True

erc721-isapprovedforall-correct-false Inapplicable Intended behavior

Detailed results for function approve

Property Name Final Result Remarks

erc721-approve-succeed-normal True

erc721-approve-set-correct True

erc721-approve-revert-not-allowed True

erc721-approve-revert-invalid-token True

erc721-approve-change-state True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function setApprovalForAll

Property Name Final Result Remarks

erc721-setapprovalforall-succeed-normal True

erc721-setapprovalforall-set-correct True

erc721-setapprovalforall-multiple True

erc721-setapprovalforall-change-state True

erc721-setapprovalforall-revert-zero Inapplicable Context not considered

Detailed Results For Contract Webacy2NFT (projects/Webacy/contracts/utils/ERC721.sol) In
Commit b62f7ff5f75d7202a8d14978da8c7dd0183204de

Verification of ERC-721 Compliance

Detailed results for function supportsInterface

Property Name Final Result Remarks

erc721-supportsinterface-correct-erc721 True

erc721-supportsinterface-succeed-always True

erc721-supportsinterface-metadata True

erc721-supportsinterface-correct-erc165 True

erc721-supportsinterface-correct-false True

erc721-supportsinterface-no-change-state True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function balanceOf

Property Name Final Result Remarks

erc721-balanceof-succeed-normal True

erc721-balanceof-correct-count True

erc721-balanceof-revert True

erc721-balanceof-no-change-state True

Detailed results for function ownerOf

Property Name Final Result Remarks

erc721-ownerof-succeed-normal True

erc721-ownerof-correct-owner True

erc721-ownerof-no-change-state True

erc721-ownerof-revert True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function transferFrom

Property Name Final Result Remarks

erc721-transferfrom-succeed-normal True

erc721-transferfrom-correct-increase True

erc721-transferfrom-correct-one-token-self True

erc721-transferfrom-correct-owner-from True

erc721-transferfrom-correct-approval True

erc721-transferfrom-correct-owner-to True

erc721-transferfrom-correct-balance True

erc721-transferfrom-correct-state-balance True

erc721-transferfrom-correct-state-owner True

erc721-transferfrom-correct-state-approval True

erc721-transferfrom-revert-invalid True

erc721-transferfrom-revert-to-zero True

erc721-transferfrom-revert-from-zero True

erc721-transferfrom-revert-not-owned True

erc721-transferfrom-revert-exceed-approval True

Detailed results for function getApproved

Property Name Final Result Remarks

erc721-getapproved-succeed-normal True

erc721-getapproved-correct-value True

erc721-getapproved-change-state True

erc721-getapproved-revert-zero True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function isApprovedForAll

Property Name Final Result Remarks

erc721-isapprovedforall-succeed-normal True

erc721-isapprovedforall-correct True

erc721-isapprovedforall-change-state True

erc721-isapprovedforall-correct-false Inapplicable Intended behavior

Detailed results for function approve

Property Name Final Result Remarks

erc721-approve-succeed-normal True

erc721-approve-set-correct True

erc721-approve-revert-not-allowed True

erc721-approve-change-state True

erc721-approve-revert-invalid-token True

Detailed results for function setApprovalForAll

Property Name Final Result Remarks

erc721-setapprovalforall-succeed-normal True

erc721-setapprovalforall-set-correct True

erc721-setapprovalforall-multiple True

erc721-setapprovalforall-change-state True

erc721-setapprovalforall-revert-zero Inapplicable Context not considered

Detailed Results For Contract ERC721 (projects/Webacy/contracts/utils/ParadigmNFT.sol) In
Commit b62f7ff5f75d7202a8d14978da8c7dd0183204de

FORMAL VERIFICATION WEBACY (AUDIT)

Verification of ERC-721 Compliance

Detailed results for function balanceOf

Property Name Final Result Remarks

erc721-balanceof-succeed-normal True

erc721-balanceof-correct-count True

erc721-balanceof-no-change-state True

erc721-balanceof-revert True

Detailed results for function supportsInterface

Property Name Final Result Remarks

erc721-supportsinterface-correct-erc721 True

erc721-supportsinterface-succeed-always True

erc721-supportsinterface-metadata True

erc721-supportsinterface-correct-erc165 True

erc721-supportsinterface-no-change-state True

erc721-supportsinterface-correct-false True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function transferFrom

Property Name Final Result Remarks

erc721-transferfrom-succeed-normal True

erc721-transferfrom-correct-increase True

erc721-transferfrom-correct-one-token-self True

erc721-transferfrom-correct-approval True

erc721-transferfrom-correct-owner-from True

erc721-transferfrom-correct-owner-to True

erc721-transferfrom-correct-balance True

erc721-transferfrom-correct-state-owner True

erc721-transferfrom-correct-state-balance True

erc721-transferfrom-correct-state-approval True

erc721-transferfrom-revert-invalid True

erc721-transferfrom-revert-from-zero True

erc721-transferfrom-revert-to-zero True

erc721-transferfrom-revert-not-owned True

erc721-transferfrom-revert-exceed-approval True

Detailed results for function ownerOf

Property Name Final Result Remarks

erc721-ownerof-succeed-normal True

erc721-ownerof-correct-owner True

erc721-ownerof-no-change-state True

erc721-ownerof-revert True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function getApproved

Property Name Final Result Remarks

erc721-getapproved-succeed-normal True

erc721-getapproved-correct-value True

erc721-getapproved-change-state True

erc721-getapproved-revert-zero True

Detailed results for function isApprovedForAll

Property Name Final Result Remarks

erc721-isapprovedforall-succeed-normal True

erc721-isapprovedforall-correct True

erc721-isapprovedforall-change-state True

erc721-isapprovedforall-correct-false Inapplicable Context not considered

Detailed results for function approve

Property Name Final Result Remarks

erc721-approve-succeed-normal True

erc721-approve-set-correct True

erc721-approve-revert-not-allowed True

erc721-approve-revert-invalid-token True

erc721-approve-change-state True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function setApprovalForAll

Property Name Final Result Remarks

erc721-setapprovalforall-succeed-normal True

erc721-setapprovalforall-set-correct True

erc721-setapprovalforall-multiple True

erc721-setapprovalforall-revert-zero Inapplicable Context not considered

erc721-setapprovalforall-change-state True

Detailed Results For Contract MultiFaucet (projects/Webacy/contracts/utils/ParadigmNFT.sol) In
Commit b62f7ff5f75d7202a8d14978da8c7dd0183204de

Verification of ERC-721 Compliance

Detailed results for function supportsInterface

Property Name Final Result Remarks

erc721-supportsinterface-correct-erc721 True

erc721-supportsinterface-metadata True

erc721-supportsinterface-succeed-always True

erc721-supportsinterface-correct-erc165 True

erc721-supportsinterface-correct-false True

erc721-supportsinterface-no-change-state True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function balanceOf

Property Name Final Result Remarks

erc721-balanceof-succeed-normal True

erc721-balanceof-correct-count True

erc721-balanceof-revert True

erc721-balanceof-no-change-state True

Detailed results for function transferFrom

Property Name Final Result Remarks

erc721-transferfrom-succeed-normal True

erc721-transferfrom-correct-one-token-self True

erc721-transferfrom-correct-increase True

erc721-transferfrom-correct-approval True

erc721-transferfrom-correct-owner-from True

erc721-transferfrom-correct-owner-to True

erc721-transferfrom-correct-balance True

erc721-transferfrom-correct-state-balance True

erc721-transferfrom-correct-state-owner True

erc721-transferfrom-correct-state-approval True

erc721-transferfrom-revert-invalid True

erc721-transferfrom-revert-from-zero True

erc721-transferfrom-revert-to-zero True

erc721-transferfrom-revert-not-owned True

erc721-transferfrom-revert-exceed-approval True

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function ownerOf

Property Name Final Result Remarks

erc721-ownerof-succeed-normal True

erc721-ownerof-correct-owner True

erc721-ownerof-revert True

erc721-ownerof-no-change-state True

Detailed results for function getApproved

Property Name Final Result Remarks

erc721-getapproved-succeed-normal True

erc721-getapproved-correct-value True

erc721-getapproved-revert-zero True

erc721-getapproved-change-state True

Detailed results for function isApprovedForAll

Property Name Final Result Remarks

erc721-isapprovedforall-succeed-normal True

erc721-isapprovedforall-correct True

erc721-isapprovedforall-change-state True

erc721-isapprovedforall-correct-false Inapplicable Context not considered

FORMAL VERIFICATION WEBACY (AUDIT)

Detailed results for function approve

Property Name Final Result Remarks

erc721-approve-succeed-normal True

erc721-approve-set-correct True

erc721-approve-revert-not-allowed True

erc721-approve-revert-invalid-token True

erc721-approve-change-state True

Detailed results for function setApprovalForAll

Property Name Final Result Remarks

erc721-setapprovalforall-succeed-normal True

erc721-setapprovalforall-set-correct True

erc721-setapprovalforall-multiple True

erc721-setapprovalforall-change-state True

erc721-setapprovalforall-revert-zero Inapplicable Context not considered

FORMAL VERIFICATION WEBACY (AUDIT)

APPENDIX WEBACY (AUDIT)

Finding Categories

Categories Description

Centralization /

Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that

act against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on

how block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only

functions being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

that may result in a vulnerability.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

Technical Description

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

APPENDIX WEBACY (AUDIT)

Assumptions and Simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any function. That ignores

contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled using modular arithmetic

based on the bit-width of the underlying numeric Solidity type. This ensures that over- and underflow characteristics

are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for Property Specification

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time step. Our analysis reasons about the contract's state upon entering and upon

leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates as atomic propositions. They are evaluated on the contract's state whenever a discrete time step

occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of the Analyzed ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply . In the following, we list those

property specifications.

Properties related to function transfer

APPENDIX WEBACY (AUDIT)

erc20-transfer-revert-zero

Function transfer Prevents Transfers to the Zero Address. Any call of the form transfer(recipient, amount) must fail

if the recipient address is the zero address. Specification:

[](started(contract.transfer(to, value), to == address(0)) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-succeed-normal

Function transfer Succeeds on Admissible Non-self Transfers. All invocations of the form transfer(recipient,

amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to != msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[to] + value <

 0x100 &&

 _balances[to] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-succeed-self

Function transfer Succeeds on Admissible Self Transfers. All self-transfers, i.e. invocations of the form

transfer(recipient, amount) where the recipient address equals the address in msg.sender must succeed and

return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to == msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[msg.sender] >= 0 &&

 _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-correct-amount

APPENDIX WEBACY (AUDIT)

Function transfer Transfers the Correct Amount in Non-self Transfers. All non-reverting invocations of

transfer(recipient, amount) that return true must subtract the value in amount from the balance of msg.sender

and add the same value to the balance of the recipient address. Specification:

[](willSucceed(contract.transfer(to, value), to != msg.sender && _balances[to] >= 0

 && value >= 0 && _balances[to] + value <

 0x100 &&

 _balances[msg.sender] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==>

 _balances[msg.sender] == old(_balances[msg.sender]) - value && _balances[to]

 == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

Function transfer Transfers the Correct Amount in Self Transfers. All non-reverting invocations of transfer(recipient,

amount) that return true and where the recipient address equals msg.sender (i.e. self-transfers) must not change

the balance of address msg.sender . Specification:

[](willSucceed(contract.transfer(to, value), to == msg.sender && _balances[to] >= 0

 && _balances[to] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==> _balances[to] ==

 old(_balances[to]))))

erc20-transfer-change-state

Function transfer Has No Unexpected State Changes. All non-reverting invocations of transfer(recipient, amount)

that return true must only modify the balance entries of the msg.sender and the recipient addresses. Specification:

[](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to) ==>

 <>(finished(contract.transfer(to, value), return == true ==> (_totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) && _balances[p1] ==

 old(_balances[p1]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transfer-exceed-balance

Function transfer Fails if Requested Amount Exceeds Available Balance. Any transfer of an amount of tokens that

exceeds the balance of msg.sender must fail. Specification:

[](started(contract.transfer(to, value), value > _balances[msg.sender] &&

 _balances[msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

APPENDIX WEBACY (AUDIT)

erc20-transfer-recipient-overflow

Function transfer Prevents Overflows in the Recipient's Balance. Any invocation of transfer(recipient, amount)

must fail if it causes the balance of the recipient address to overflow. Specification:

[](started(contract.transfer(to, value), to != msg.sender && _balances[to] + value

 >= 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _balances[msg.sender] <

 0x100 && value >

 0 && value <= _balances[msg.sender]) ==> <>(reverted(contract.transfer) ||

 finished(contract.transfer(to, value), return == false) ||

 finished(contract.transfer(to, value), _balances[to] > old(_balances[to]) +

 value -

 0x100)))

erc20-transfer-false

If Function transfer Returns false , the Contract State Has Not Been Changed. If the transfer function in contract

contract fails by returning false , it must undo all state changes it incurred before returning to the caller. Specification:

[](willSucceed(contract.transfer(to, value)) ==> <>(finished(contract.transfer(to,

 value), return == false ==> (_balances == old(_balances) && _totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables)))))

erc20-transfer-never-return-false

Function transfer Never Returns false . The transfer function must never return false to signal a failure.

Specification:

[](!(finished(contract.transfer, return == false)))

Properties related to function transferFrom

erc20-transferfrom-revert-from-zero

Function transferFrom Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, dest,

amount) where the from address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), from == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

APPENDIX WEBACY (AUDIT)

erc20-transferfrom-revert-to-zero

Function transferFrom Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, dest, amount)

where the dest address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), to == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-succeed-normal

Function transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest,

amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && to !=

 address(0) && from != to && value <= _balances[from] && value <=

 _allowances[from][msg.sender] && _balances[to] + value <

 0x100 && value >=

 0 && _balances[to] >= 0 && _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-succeed-self

Function transferFrom Succeeds on Admissible Self Transfers. All invocations of transferFrom(from, dest, amount)

where the dest address equals the from address (i.e. self-transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call. Specification:

APPENDIX WEBACY (AUDIT)

[](started(contract.transferFrom(from, to, value), from != address(0) && from == to

 && value <= _balances[from] && value <= _allowances[from][msg.sender] && value

 >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-correct-amount

Function transferFrom Transfers the Correct Amount in Non-self Transfers. All invocations of transferFrom(from, dest,

amount) that succeed and that return true subtract the value in amount from the balance of address from and add the

same value to the balance of address dest . Specification:

[](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] + value <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]) - value && _balances[to] ==

 old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

Function transferFrom Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, dest,

amount) that return true and where the address in from equals the address in dest (i.e. self-transfers) do not change

the balance entry of the from address (which equals dest). Specification:

[](willSucceed(contract.transferFrom(from, to, value), from == to && value >= 0 &&

 value < 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

Function transferFrom Updated the Allowance Correctly. All non-reverting invocations of transferFrom(from, dest,

amount) that return true must decrease the allowance for address msg.sender over address from by the value in

amount . Specification:

APPENDIX WEBACY (AUDIT)

[](willSucceed(contract.transferFrom(from, to, value), value >= 0 && value <

 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 ((_allowances[from][msg.sender] == old(_allowances[from][msg.sender]) -

 value) || (_allowances[from][msg.sender] ==

 old(_allowances[from][msg.sender]) && (from == msg.sender ||

 old(_allowances[from][msg.sender]) ==

 0xFF))))))

erc20-transferfrom-change-state

Function transferFrom Has No Unexpected State Changes. All non-reverting invocations of transferFrom(from, dest,

amount) that return true may only modify the following state variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

[](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to &&

 (p2 != from || p3 != msg.sender)) ==> <>(finished(contract.transferFrom(from,

 to, amount), return == true ==> (_totalSupply == old(_totalSupply) &&

 _balances[p1] == old(_balances[p1]) && _allowances[p2][p3] ==

 old(_allowances[p2][p3]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-fail-exceed-balance

Function transferFrom Fails if the Requested Amount Exceeds the Available Balance. Any call of the form

transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address from must fail.

Specification:

[](started(contract.transferFrom(from, to, value), value > _balances[from] &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-fail-exceed-allowance

APPENDIX WEBACY (AUDIT)

Function transferFrom Fails if the Requested Amount Exceeds the Available Allowance. Any call of the form

transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address msg.sender must

fail. Specification:

[](started(contract.transferFrom(from, to, value), value >

 _allowances[from][msg.sender] && _allowances[from][msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false) || finished(contract.transferFrom(from, to,

 value), return == true && (msg.sender == from ||

 _allowances[from][msg.sender] ==

 0xFF))))

erc20-transferfrom-fail-recipient-overflow

Function transferFrom Prevents Overflows in the Recipient's Balance. Any call of transferFrom(from, dest, amount)

with a value in amount whose transfer would cause an overflow of the balance of address dest must fail. Specification:

[](started(contract.transferFrom(from, to, value), from != to && _balances[to] +

 value >= 0x100 &&

 value < 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false) || finished(contract.transferFrom(from, to,

 value), _balances[to] > old(_balances[to]) + value -

 0x100)))

erc20-transferfrom-false

If Function transferFrom Returns false , the Contract's State Has Not Been Changed. If transferFrom returns false

to signal a failure, it must undo all incurred state changes before returning to the caller. Specification:

[](willSucceed(contract.transferFrom(from, to, value)) ==>

 <>(finished(contract.transferFrom(from, to, value), return == false ==>

 (_balances == old(_balances) && _totalSupply == old(_totalSupply) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-never-return-false

Function transferFrom Never Returns false . The transferFrom function must never return false . Specification:

[](!(finished(contract.transferFrom, return == false)))

APPENDIX WEBACY (AUDIT)

Properties related to function totalSupply

erc20-totalsupply-succeed-always

Function totalSupply Always Succeeds. The function totalSupply must always succeeds, assuming that its execution

does not run out of gas. Specification:

[](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

Function totalSupply Returns the Value of the Corresponding State Variable. The totalSupply function must return the

value that is held in the corresponding state variable of contract contract. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply, return

 == _totalSupply)))

erc20-totalsupply-change-state

Function totalSupply Does Not Change the Contract's State. The totalSupply function in contract contract must not

change any state variables. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply,

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

Function balanceOf Always Succeeds. Function balanceOf must always succeed if it does not run out of gas.

Specification:

[](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

Function balanceOf Returns the Correct Value. Invocations of balanceOf(owner) must return the value that is held in the

contract's balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 return == _balances[owner])))

erc20-balanceof-change-state

APPENDIX WEBACY (AUDIT)

Function balanceOf Does Not Change the Contract's State. Function balanceOf must not change any of the contract's

state variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function allowance

erc20-allowance-succeed-always

Function allowance Always Succeeds. Function allowance must always succeed, assuming that its execution does not

run out of gas. Specification:

[](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

Function allowance Returns Correct Value. Invocations of allowance(owner, spender) must return the allowance that

address spender has over tokens held by address owner . Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), return ==

 _allowances[owner][spender])))

erc20-allowance-change-state

Function allowance Does Not Change the Contract's State. Function allowance must not change any of the contract's

state variables. Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables))))

Properties related to function approve

erc20-approve-revert-zero

Function approve Prevents Giving Approvals For the Zero Address. All calls of the form approve(spender, amount) must

fail if the address in spender is the zero address. Specification:

APPENDIX WEBACY (AUDIT)

[](started(contract.approve(spender, value), spender == address(0)) ==>

 <>(reverted(contract.approve) || finished(contract.approve(spender, value),

 return == false)))

erc20-approve-succeed-normal

Function approve Succeeds for Admissible Inputs. All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas. Specification:

[](started(contract.approve(spender, value), spender != address(0)) ==>

 <>(finished(contract.approve(spender, value), return == true)))

erc20-approve-correct-amount

Function approve Updates the Approval Mapping Correctly. All non-reverting calls of the form approve(spender, amount)

that return true must correctly update the allowance mapping according to the address msg.sender and the values of

spender and amount . Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && value >=

 0 && value <

 0x100) ==>

 <>(finished(contract.approve(spender, value), return == true ==>

 _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

Function approve Has No Unexpected State Changes. All calls of the form approve(spender, amount) must only update

the allowance mapping according to the address msg.sender and the values of spender and amount and incur no other

state changes. Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && (p1 !=

 msg.sender || p2 != spender)) ==> <>(finished(contract.approve(spender,

 value), return == true ==> _totalSupply == old(_totalSupply) && _balances

 == old(_balances) && _allowances[p1][p2] == old(_allowances[p1][p2]) &&

 other_state_variables == old(other_state_variables))))

erc20-approve-false

If Function approve Returns false , the Contract's State Has Not Been Changed. If function approve returns false to

signal a failure, it must undo all state changes that it incurred before returning to the caller. Specification:

APPENDIX WEBACY (AUDIT)

[](willSucceed(contract.approve(spender, value)) ==>

 <>(finished(contract.approve(spender, value), return == false ==> (_balances ==

 old(_balances) && _totalSupply == old(_totalSupply) && _allowances ==

 old(_allowances) && other_state_variables == old(other_state_variables)))))

erc20-approve-never-return-false

Function approve Never Returns false . The function approve must never returns false . Specification:

[](!(finished(contract.approve, return == false)))

Description of ERC-721 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-721 functions

transferFrom , balanceOf , ownerOf , getApproved , isApprovedForAll , approve , setApprovalForAll

supportsInterface , tokenURI , tokenByIndex , tokenByIndex , decimals and totalSupply . In the following, we list

those property specifications.

Properties related to function transferFrom

erc721-transferfrom-succeed-normal

Function transferFrom Succeeds on Admissible Inputs. All invocations of transferFrom(from, to, tokenId) must

succeed if

address from is the owner of token tokenId ,

the sender is approved to transfer token tokenId ,

transferring the token to the address to does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, tokenId), from != address(0) && to !=

 address(0) && _owner[tokenId]==from && ((from == msg.sender) ||

 (_approved[tokenId] == msg.sender) || _approvedAll[from][msg.sender]) &&

 _balances[to] >= 0 && _balances[from] >= 1 && _balances[to] <

 0x100 - 1 &&

 _balances[from] <

 0x100) ==> <>

finished(contract.transferFrom(from, to, tokenId)))

erc721-transferfrom-correct-increase

Function transferFrom Transfers the Complete Token in Non-self Transfers. All invocations of transferFrom(from, to,

tokenId) that succeed must subtract a token from the balance of address from and add the token to the balance of

address to . Specification:

APPENDIX WEBACY (AUDIT)

[](willSucceed(contract.transferFrom(from, to, tokenId), from != to &&

 _balances[from] > 0 && _balances[from] <

 0x100 &&

 _balances[to] <

 0x100 - 1) ==>

 <>(finished(contract.transferFrom(from, to, tokenId), _balances[from] ==

 (old(_balances[from]) - 1) && _balances[to] == (old(_balances[to]) + 1))))

erc721-transferfrom-correct-one-token-self

Function transferFrom Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, to,

tokenId) that return true and where the address from equals the address to (i.e. self-transfers) must not change the

balance entry of the address from (which equals to). Specification:

[](willSucceed(contract.transferFrom(from, to, tokenId), from == to &&

 _owner[tokenId] == from) ==> <>(finished(contract.transferFrom(from, to,

 tokenId), _balances[from] == old(_balances[from]))))

erc721-transferfrom-correct-approval

Function transferFrom Updates the Approval Correctly. All non-reverting invocations of transferFrom(from, to,

tokenId) that return must remove any approval for token tokenId . Specification:

[](willSucceed(contract.transferFrom(from, to, tokenId), p1 != address(0)) ==>

 <>(finished(contract.transferFrom(from, to, tokenId), (_approved[tokenId] !=

 p1))))

erc721-transferfrom-correct-owner-from

Function transferFrom Removes Token Ownership of From. All non-reverting and non-self invocations of

transferFrom(from, to, tokenId) that return, must remove the ownership of token tokenId from address from .

Specification:

[](willSucceed(contract.transferFrom(from, to, tokenId), from != to && from !=

 address(0) && to != address(0) && (msg.sender==from ||

 _approved[tokenId]==msg.sender || _approvedAll[from][msg.sender])) ==>

 <>(finished(contract.transferFrom(from, to, tokenId), (_owner[tokenId] !=

 from))))

erc721-transferfrom-correct-owner-to

Function transferFrom Transfers Ownership. All non-reverting invocations of transferFrom(from, to, tokenId) must

transfer the ownership of token tokenId to the address to . Specification:

APPENDIX WEBACY (AUDIT)

[](willSucceed(contract.transferFrom(from, to, tokenId), from != address(0) && to

 != address(0) && _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 (msg.sender==from || _approved[tokenId]==msg.sender ||

 _approvedAll[from][msg.sender])) ==> <>(finished(contract.transferFrom(from,

 to, tokenId), (_owner[tokenId] == to))))

erc721-transferfrom-correct-balance

Function transferFrom Sum of Balances is Constant. All non-reverting invocations of transferFrom(from, to,

tokenId) must keep the sum of token balances constant. Specification:

[](willSucceed(contract.transferFrom(from, to, tokenId), from!=address(0) &&

 _balances[from]>0 && to!=address(0) && _balances[from] <

 0x100 &&

 _balances[to] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, tokenId),

 (old(_balances[from])-_balances[from]) ==

 (_balances[to]-old(_balances[to])))))

erc721-transferfrom-correct-state-balance

Function transferFrom Keeps Balances Constant Except for From and To. All non-reverting invocations of

transferFrom(from, to, tokenId) must only modify the balance of the addresses from and to . Specification:

[](willSucceed(contract.transferFrom(from, to, tokenId), p1 != from && p1 != to)

 ==> <>(finished(contract.transferFrom(from, to, tokenId), _balances[p1] ==

 old(_balances[p1]))))

erc721-transferfrom-correct-state-owner

Function transferFrom Has Expected Ownership Changes. All non-reverting invocations of transferFrom(from, to,

tokenId) must only modify the ownership of token tokenId . Specification:

[](willSucceed(contract.transferFrom(from, to, tokenId), t1 != tokenId) ==>

 <>(finished(contract.transferFrom(from, to, tokenId), _owner[t1] ==

 old(_owner[t1]) && _owner[t1] == old(_owner[t1]))))

erc721-transferfrom-correct-state-approval

Function transferFrom Has Expected Approval Changes. All non-reverting invocations of transferFrom(from, to,

tokenId) must remove only approvals for token tokenId Specification:

APPENDIX WEBACY (AUDIT)

[](willSucceed(contract.transferFrom(from, to, tokenId), t1 != tokenId) ==>

 <>(finished(contract.transferFrom(from, to, tokenId), _approved[t1] ==

 old(_approved[t1]))))

erc721-transferfrom-revert-invalid

Function transferFrom Fails for Invalid Tokens. All calls of the form transferFrom(from, to, tokenId) must fail for any

invalid token. Specification:

[](started(contract.transferFrom(from, to, tokenId), _owner[tokenId] == address(0))

 ==> <>(reverted(contract.transferFrom)))

erc721-transferfrom-revert-from-zero

Function transferFrom Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, to,

tokenId) must fail if the from address is zero. Specification:

[](started(contract.transferFrom(from, to, tokenId), from == address(0)) ==>

 <>(reverted(contract.transferFrom(from, to, tokenId))))

erc721-transferfrom-revert-to-zero

Function transferFrom Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, to, tokenId)

must fail if the address to is the zero address. Specification:

[](started(contract.transferFrom(from, to, tokenId), to == address(0)) ==>

 <>(reverted(contract.transferFrom(from, to, tokenId))))

erc721-transferfrom-revert-not-owned

Function transferFrom Fails if From Is Not Token Owner. Any call of the form transferFrom(from, to, tokenId) must

fail if address 'from' is not the owner of token tokenId . Specification:

[](started(contract.transferFrom(from, to, tokenId), _owner[tokenId]!= from) ==>

 <>(reverted(contract.transferFrom)))

erc721-transferfrom-revert-exceed-approval

Function transferFrom Fails for Token Transfers without Approval. Any call of the form transferFrom(from, to,

tokenId) must fail if the sender is neither the token owner nor an operator of the token owner nor approved for token

tokenId . Specification:

[](started(contract.transferFrom(from, to, tokenId), msg.sender!=from &&

 _approved[tokenId]!=msg.sender && !_approvedAll[from][msg.sender]) ==>

 <>(reverted(contract.transferFrom)))

APPENDIX WEBACY (AUDIT)

Properties related to function supportsInterface

erc721-supportsinterface-correct-erc721

Function supportsInterface Signals that the Contract Supports ERC721 . Invocations of supportsInterface(id) must

signal that the interface ERC721 is implemented. Specification:

[](willSucceed(contract.supportsInterface(id), id==0x80ac58cd) ==> <>

 finished(contract.supportsInterface(id), return==true))

erc721-supportsinterface-metadata

Function supportsInterface Returns that Interface ERC721Metadata Implemented. A call of

supportsInterface(interfaceId) with the interface id of ERC721Metadata must return true. Specification:

[](willSucceed(contract.supportsInterface(interfaceId), interfaceId==0x5b5e139f)

 ==> <> finished(contract.supportsInterface(interfaceId), return==true))

erc721-supportsinterface-succeed-always

Function supportsInterface Always Succeeds. Function supportsInterface must always succeed if it does not run out

of gas. Specification:

[](started(contract.supportsInterface(id)) ==> <>

 finished(contract.supportsInterface(id)))

erc721-supportsinterface-correct-erc165

Function supportsInterface Signals that the Contract Supports ERC165. Invocations of supportsInterface(id) must

signal that the interface ERC165 is implemented. Specification:

[](willSucceed(contract.supportsInterface(id), id==0x01ffc9a7) ==> <>

 finished(contract.supportsInterface(id), return==true))

erc721-supportsinterface-correct-false

Function supportsInterface Returns False for Id 0xffffffff. Invocations of supportsInterface(id) with id 0xffffffff

must return false . Specification:

[](willSucceed(contract.supportsInterface(id), id==0xffffffff) ==> <>

 finished(contract.supportsInterface(id), return==false))

erc721-supportsinterface-no-change-state

Function supportsInterface Does Not Change the Contract's State. Function supportsInterface must not change any

APPENDIX WEBACY (AUDIT)

of the contract's state variables. Specification:

[](willSucceed(contract.supportsInterface(id)) ==>

 <>(finished(contract.supportsInterface(id), other_state_variables ==

 old(other_state_variables))))

Properties related to function balanceOf

erc721-balanceof-succeed-normal

Function balanceOf Succeeds on Admissible Inputs. All invocations of balanceOf(owner) must succeed if the address

owner is not zero and it does not run out of gas. Specification:

[](started(contract.balanceOf(owner), owner!=address(0)) ==>

 <>(finished(contract.balanceOf)))

erc721-balanceof-correct-count

Function balanceOf Returns the Correct Value. Invocations of balanceOf(owner) must return the value that is held in the

balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 return == _balances[owner])))

erc721-balanceof-revert

Function balanceOf Fails on the Zero Address. Invocations of balanceOf(owner) must fail if the address owner is the

zero address. Specification:

[](started(contract.balanceOf(owner), owner==address(0)) ==>

 <>(reverted(contract.balanceOf(owner))))

erc721-balanceof-no-change-state

Function balanceOf Does Not Change the Contract's State. Function balanceOf must not change any of the contract's

state variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf, _balances ==

 old(_balances) && other_state_variables == old(other_state_variables))))

Properties related to function ownerOf

erc721-ownerof-succeed-normal

APPENDIX WEBACY (AUDIT)

Function ownerOf Succeeds For Valid Tokens. Function ownerOf(token) must always succeed for valid tokens if it does

not run out of gas. Specification:

[](started(contract.ownerOf(token), _owner[token]!=address(0)) ==>

 <>(finished(contract.ownerOf)))

erc721-ownerof-correct-owner

Function ownerOf Returns the Correct Owner. Invocations of ownerOf(token) must return the owner for a valid token

token that is held in the contract's owner mapping. Specification:

[](willSucceed(contract.ownerOf(token), _owner[token]!=address(0)) ==>

 <>(finished(contract.ownerOf(token), return == _owner[token])))

erc721-ownerof-revert

Function ownerOf Fails On Invalid Tokens. Invocations of ownerOf(token) must fail for an invalid token. Specification:

[](started(contract.ownerOf(token), _owner[token]==address(0)) ==>

 <>(reverted(contract.ownerOf(token))))

erc721-ownerof-no-change-state

Function ownerOf Does Not Change the Contract's State. Function ownerOf must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.ownerOf) ==> <>(finished(contract.ownerOf, _owner ==

 old(_owner) && other_state_variables == old(other_state_variables))))

Properties related to function getApproved

erc721-getapproved-succeed-normal

Function getApproved Succeeds For Valid Tokens. Function getApproved must always succeed for valid tokens,

assuming that its execution does not run out of gas. Specification:

[](started(contract.getApproved(token), _owner[token]!=address(0)) ==>

 <>(finished(contract.getApproved)))

erc721-getapproved-correct-value

Function getApproved Returns Correct Approved Address. Invocations of getApproved(token) must return the approved

address of a valid token . Specification:

APPENDIX WEBACY (AUDIT)

[](willSucceed(contract.getApproved(token)) ==>

 <>(finished(contract.getApproved(token), return == _approved[token] || return ==

 address(0))))

erc721-getapproved-revert-zero

Function getApproved Fails on Invalid Tokens. Invocations of getApproved(token) with an invalid token must fail.

Specification:

[](started(contract.getApproved(token), _owner[token]==address(0)) ==>

 <>(reverted(contract.getApproved)))

erc721-getapproved-change-state

Function getApproved Does Not Change the Contract's State. Function getApproved must not change any of the

contract's state variables. Specification:

[](willSucceed(contract.getApproved) ==> <>(finished(contract.getApproved,

 _approved == old(_approved) && other_state_variables ==

 old(other_state_variables))))

Properties related to function isApprovedForAll

erc721-isapprovedforall-succeed-normal

Function isApprovedForAll Always Succeeds. Function isApprovedForAll does always succeed, assuming that its

execution does not run out of gas. Specification:

[](started(contract.isApprovedForAll(owner, operator)) ==>

 <>(finished(contract.isApprovedForAll)))

erc721-isapprovedforall-correct

Function isApprovedForAll Returns Correct Approvals. Invocations of isApprovedForAll(owner, operator) must

return whether a non-zero address operator is approved for tokens of a non-zero address owner , or return false.

Specification:

[](willSucceed(contract.isApprovedForAll(owner, operator), owner!=address(0) &&

 operator!=address(0)) ==> <>(finished(contract.isApprovedForAll(owner,

 operator), return == _approvedAll[owner][operator])))

erc721-isapprovedforall-correct-false

Function isApprovedForAll Returns Non-Approval For Invalid Inputs. Invocations of isApprovedForAll(owner,

operator) must return false if called with any invalid address. Specification:

APPENDIX WEBACY (AUDIT)

[](started(contract.isApprovedForAll(owner, operator), owner==address(0) ||

 operator==address(0)) ==> <>(finished(contract.isApprovedForAll, return ==

 false)))

erc721-isapprovedforall-change-state

Function isApprovedForAll Does Not Change the Contract's State. Function isApprovedForAll does not change any of

the contract's state variables. Specification:

[](willSucceed(contract.isApprovedForAll) ==>

 <>(finished(contract.isApprovedForAll, _approvedAll == old(_approvedAll) &&

 other_state_variables == old(other_state_variables))))

Properties related to function approve

erc721-approve-succeed-normal

Function approve Return for Admissible Inputs. All calls of the form approve(to, tokenId) must return if

the sender is the owner or an authorized operator of the owner

the token tokenId is valid and

the execution does not run out of gas. Specification:

[](started(contract.approve(to, tokenId), (_owner[tokenId]!=address(0)) &&

 (_owner[tokenId]==msg.sender || _approvedAll[_owner[tokenId]][msg.sender]) &&

 (_owner[tokenId]!=to)) ==> <>(finished(contract.approve)))

erc721-approve-set-correct

Function approve Sets Approve. Any returning call of the form approve(to, tokenId) must approve the address to for

token tokenId . Specification:

[](willSucceed(contract.approve(to, tokenId), (_owner[tokenId]!=address(0)) &&

 (_owner[tokenId]==msg.sender || _approvedAll[_owner[tokenId]][msg.sender])) ==>

<>(finished(contract.approve(to, tokenId), _approved[tokenId]==to)))

erc721-approve-revert-not-allowed

Function approve Prevents Unpermitted Approvals. All calls of the form approve(to, tokenId) must fail if the message

sender is not permitted to access token tokenId . Specification:

[](started(contract.approve(to, tokenId), _owner[tokenId]!=msg.sender &&

 !_approvedAll[_owner[tokenId]][msg.sender]) ==> <>(reverted(contract.approve)))

APPENDIX WEBACY (AUDIT)

erc721-approve-revert-invalid-token

Function approve Fails For Calls with Invalid Tokens. All calls of the form approve(to, tokenId) must fail for an invalid

token. Specification:

[](started(contract.approve(to, tokenId), _owner[tokenId] == address(0)) ==>

 <>(reverted(contract.approve)))

erc721-approve-change-state

Function approve Has No Unexpected State Changes. All calls of the form approve(to, tokenId) must only update the

allowance mapping according to a valid token tokenId and the address to , and incur no other state changes.

Specification:

[](willSucceed(contract.approve(approved, tokenId), t1!=tokenId) ==>

 <>(finished(contract.approve(approved, tokenId),

 _approved[t1]==old(_approved[t1]) && other_state_variables ==

 old(other_state_variables))))

Properties related to function setApprovalForAll

erc721-setapprovalforall-succeed-normal

Function setApprovalForAll Return for Admissible Inputs. Calls of the form setApprovalForAll(operator, approved)

must return if

the message sender is not the operator ,

operator is not the zero address and

the execution does not run out of gas. Specification:

[](started(contract.setApprovalForAll(operator, approved), (msg.sender!=operator)

 && (operator!=address(0))) ==> <>(finished(contract.setApprovalForAll)))

erc721-setapprovalforall-set-correct

Function setApprovalForAll Approves Operator. All non-reverting calls of the form setApprovalForAll(operator,

approved) must set the approval of a non-zero address operator according to the Boolean value approved .

Specification:

[](willSucceed(contract.setApprovalForAll(operator, approved),

 operator!=address(0)) ==> <>(finished(contract.setApprovalForAll(operator,

 approved), _approvedAll[msg.sender][operator]==approved)))

erc721-setapprovalforall-multiple

APPENDIX WEBACY (AUDIT)

Function setApprovalForAll Can Set Multiple Operators. Calls of the form setApprovalForAll(operator, approved)

must be able to set multiple operators for the tokens of the message sender. Specification:

[](willSucceed(contract.setApprovalForAll(operator, approved), op1!=address(0) &&

 approved && _approvedAll[msg.sender][op1]) ==>

 <>(finished(contract.setApprovalForAll(operator, approved),

 _approvedAll[msg.sender][operator] && _approvedAll[msg.sender][op1])))

erc721-setapprovalforall-revert-zero

Function setApprovalForAll Prevents Giving Approvals to the Zero Address. All calls of the form

setApprovalForAll(operator, approved) must fail if the address operator is the zero address. Specification:

[](started(contract.setApprovalForAll(operator, approved), operator == address(0))

 ==> <>(reverted(contract.setApprovalForAll)))

erc721-setapprovalforall-change-state

Function setApprovalForAll Has No Unexpected State Changes. All calls of the form setApprovalForAll(operator,

approved) must only update the approval mapping according to the message sender, the address operator and the

Boolean value approved but incur no other state changes. Specification:

[](started(contract.setApprovalForAll(op, approved), ow1!=msg.sender || op1!=op)

 ==> <>(finished(contract.setApprovalForAll(op, approved),

 _approvedAll[ow1][op1]==old(_approvedAll[ow1][op1]) &&

 _approvedAll[msg.sender][op]==approved && other_state_variables ==

 old(other_state_variables)) || reverted(contract.setApprovalForAll(op,

 approved))))

APPENDIX WEBACY (AUDIT)

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER WEBACY (AUDIT)

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER WEBACY (AUDIT)

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Webacy (Audit) Security Assessment CertiK Verified on Apr 3rd, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

