

Magpie Protocol
S E C U R I T Y A S S E S S M E N T

December 13th 2022

Contents
T A B L E O F

Legal Disclaimer

D3ploy Intro

Project Summary

Audit Score

Methodology

Key Findings

Vulnerabilities

Audit Scope Source Code

Appendix

090501

060602

0703

0804

10

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Disclaimer
L E G A L

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy audits are not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. These reports are not, nor should be considered, an

indication of the economics or value of any “product” or “asset” created by any team

or project that contracts d3ploy to perform a security review. D3ploy does not provide

any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

D3ploy’s goal is to help reduce the attack vectors and the high level of variance

associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to

analyze.

D3ploy audits should not be used in any way to make decisions around investment

or involvement with any particular project. These reports in no way provide

investment advice, nor should be leveraged as investment advice of any sort. The

report is provided only for the contract(s) mentioned in the report and does not

include any other potential additions and/or contracts deployed by Owner. The

report does not provide a review for contract(s), applications and/or operations, that

are out of this report scope.

D3ploy represents an extensive auditing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology. Blockchain technology and

cryptographic assets present a high level of ongoing risk. D3ploy’s position is that

each company and individual are responsible for their own due diligence and

continuous security. The security audit is not meant to replace functional testing

done before a software release. As one audit-based assessment cannot be

considered comprehensive, we always recommend proceeding with several

independent manual audits and a public bug bounty program to ensure the security

of the smart contracts.

Introduction
D 3 P L O Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

D3ploy is a leading blockchain security company that serves

to verify the security and correctness of smart contracts and

blockchain-based protocols. Through the utilization of our

world-class technical expertise, alongside our proprietary,

innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our

overarching vision; provable trust for all throughout all facets

of blockchain.

Secure your project with d3ploy

Vunerability checking

A crucial manual inspection carried out to eliminate any code flaws and security loopholes. This is vital to

avoid vulnerabilities and exposures incurring costly errors at a later stage.

Contract verification

A thorough and comprehensive review in order to verify the safety of a smart contract and ensure it is ready

for launch and built to protect the end-user

Risk assessment

Analyse the architecture of the blockchain system to evaluate, assess and eliminate probable security

breaches. This includes a full assessment of risk and a list of expert suggestions.

In-depth reporting

A truly custom exhaustive report that is transparent and depicts details of any identified threats and

vulnerabilities and classifies those by severity.

Fast turnaround

We know that your time is valuable and therefore provide you with the fastest turnaround times in the

industry to ensure that both your project and community are at ease.

Best-of-class blockchain engineers

Our engineers combine both experience and knowledge stemming from a large pool of developers at our

disposal. We work with some of the brightest minds that have audited countless smart contracts over the

last 4 years.

We offer field-proven audits with in-depth reporting and a

range of suggestions to improve and avoid contract

vulnerabilities. Industry-leading comprehensive and

transparent smart contract auditing on all public and private

blockchains.

Introduction Social
P R O J E C T I N F O

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Magpie protocol is a cross-chain liquidity aggregator that enables seamless cross-

chain swaps with near-instant finality and cost efficiency on many of the top

blockchains, all without the need to bridge any assets, making for an extremely fast,

secure, easy, and gas efficient solution.

Magpie protocol incorporates a unique technical implementation that allows

execution of cross-chain swaps without the need for the user to bridge assets from

any of the top bridges. This saves time and cost by reducing the complexity and risks

involved in using any of the bridging solutions to move assets across chains.

Project Name

Contract Name

Contract Address

Contract Chain

Contract Type

Platform

Language

Network

Codebase

Total Token Supply

Magpie Protocol

FLY Token

-

Not Yet Deployed on Mainnet

Smart Contract

EVM

Solidity

Ethereum (ERC20)

Private GitHub Repository

-

https://t.me/magpieprotocol

https://discord.gg/CwJuFeHp6f

https://twitter.com/magpieprotocol

https://github.com/magpieprotocol/

https://www.magpiefi.xyz/

https://medium.com/@Magpieprotocol

contact@magpiefi.xyz

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

P A S S

97
Score
A U D I T

Critical 0

Major 0

Medium 0

Minor 2

Informational 6

Discussion 0

Issues 8

All issues are described in further detail on

the following pages.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

magpieprotocol/magpie-contracts MagpieBridge.sol

 MagpieCore.sol

 MagpieCurveRouter.sol

 MagpieGasStation.sol

 MagpieRouter.sol

Private Repository

magpieprotocol/magpie-contracts/ interfaces/ Private Repository

magpieprotocol/magpie-contracts/ lib/ Private Repository

magpieprotocol/magpie-contracts/ security/ Private Repository

ScopeA U D I T

C O D E B A S E F I L E S L O C A T I O N

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

T E C H N I Q U E S T I M E S T A M P

This report has been prepared for Magpie Protocol to discover issues and
vulnerabilities in the source code of the Magpie Protocol project as well as any
contract dependencies that were not part of an officially recognized library. A
comprehensive examination has been performed, utilizing Dynamic, Static Analysis
and Manual Review techniques.

The auditing process pays special attention to the following considerations
 Testing the smart contracts against both common and uncommon attack

vectors
 Assessing the codebase to ensure compliance with current best practices and

industry standards
 Ensuring contract logic meets the specifications and intentions of the client
 Cross referencing contract structure and implementation against similar smart

contracts produced by industry leaders
 Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to
informational. We recommend addressing these findings to ensure a high level of
security standards and industry practices. We suggest recommendations that could
better serve the project from the security perspective in the comments below.

Version

Date

Descrption

v1.0

2022/12/12

Layout project

 Architecture / Manual review / Static & dynamic security testing

 Summary

Version

Date

Descrption

v1.1

2022/12/13

Review Addressed Issues

 Summary

MethodologyR E V I E W

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

Floating Pragma Minor Acknowledged

Dead Code Informational Acknowledged

Gas Optimization in Require Statements Gas Acknowledged

Unindexed Event Parameters Informational Acknowledged

Missing Zero Address Validations Minor Acknowledged

Functions should be declared External Gas Acknowledged

Cheaper Inequalities in if() Gas Acknowledged

Cheaper Inequalities In Require() Gas Acknowledged

T I T L E S E V E R I T Y S T A T U S

FindingK E Y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Locking the pragma helps ensure that the contracts do not accidentally get
deployed using an older version of the Solidity compiler affected by vulnerabilities.
The contracts found in the repository were allowing floating or unlocked pragma to
be used, i.e., >=0.8.0<0.9.0, >=0.6.2, and >=0.5.0.

This allows the contracts to be compiled with all the solidity compiler versions above
the limit specified. The following contracts were found to be affected:

Issue

Type

Level

Remediation

Alleviation / Retest

 : Floating Pragma

 : Floating Pragma (SWC-103)

 : Minor

 : Keep the compiler versions consistent in all the smart contract files.
Do not allowfloating pragmas anywhere.

Reference: https://swcregistry.io/docs/SWC-103

 :
 >=0.8.0<0.9.0 - contracts/MagpieBridge.sol
 >=0.8.0<0.9.0 - contracts/MagpieCore.sol
 >=0.8.0<0.9.0 - contracts/MagpieCurveRouter.sol
 >=0.8.0<0.9.0 - contracts/MagpieGasStation.sol
 >=0.8.0<0.9.0 - contracts/MagpieRouter.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IMagpieBridge.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IMagpieCore.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IMagpieCurveRouter.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IMagpieRouter.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IStargateFactory.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IStargateFeeLibrary.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IStargatePool.sol

L0
L0

L0
L0

L0
L0

L0
L0

L0
L0

L0
L02

1-1

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

 >=0.8.0<0.9.0 - contracts/interfaces/IStargateReceiver.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IStargateRouter.sol
 >=0.5.0 - contracts/interfaces/IWETH.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IWormhole.sol
 >=0.8.0<0.9.0 - contracts/interfaces/IWormholeCore.sol
 >=0.8.0<0.9.0 - contracts/interfaces/balancer-v2/IAsset.sol
 >=0.8.0<0.9.0 - contracts/interfaces/balancer-v2/IBasePool.sol
 >=0.8.0<0.9.0 - contracts/interfaces/balancer-v2/IVault.sol
 >=0.8.0<0.9.0 - contracts/interfaces/curve/IAddressProvider.sol
 >=0.8.0<0.9.0 - contracts/interfaces/curve/ICryptoFactory.sol
 >=0.8.0<0.9.0 - contracts/interfaces/curve/ICryptoPool.sol
 >=0.8.0<0.9.0 - contracts/interfaces/curve/ICryptoRegistry.sol
 >=0.8.0<0.9.0 - contracts/interfaces/curve/ICurvePool.sol
 >=0.8.0<0.9.0 - contracts/interfaces/curve/IRegistry.sol
 >=0.6.2 - contracts/interfaces/uniswap-v2/IUniswapV2Router01.sol
 >=0.6.2 - contracts/interfaces/uniswap-v2/IUniswapV2Router02.sol
 >=0.6.2 - contracts/interfaces/uniswap-v3/IUniswapV3Router.sol
 >=0.8.0<0.9.0 - contracts/lib/LibAddressArray.sol
 >=0.8.0<0.9.0 - contracts/lib/LibAsset.sol
 >=0.8.0<0.9.0 - contracts/lib/LibAssetUpgradeable.sol
 >=0.8.0<0.9.0 - contracts/lib/LibBytes.sol
 >=0.8.0<0.9.0 - contracts/lib/LibSwap.sol
 >=0.8.0<0.9.0 - contracts/lib/LibUint256Array.sol
 >=0.8.0<0.9.0 - contracts/security/Pausable.sol

L0
L0

L0
L0

L0
L02

L0
L02

L02
L0

L02
L02

L0
L02

L02
L02

L02
L02

L02
L0

L0
L0

L0
L02

1-2

I M P A C T S

If the smart contract gets compiled and deployed with an older or too recent version
of the solidity compiler, there’s a chance that it may get compromised due to the
bugs present in the older versions or unidentified exploits in the new versions.
Incompatibility issues may also arise if the contract code does not support features
in other compiler versions, therefore, breaking the logic. The likelihood of exploitation
is really low therefore this is only informational.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

It is recommended to keep the production repository clean to prevent confusion and
the introduction of vulnerabilities. The functions and parameters, contracts, and
interfaces that are never used or called externally or from inside the contracts
should be removed when the contract is deployed on the mainnet.

 contracts/lib/LibAddressArray.sol - includes()
 contracts/lib/LibAsset.sol - decreaseAllowance()
 contracts/lib/LibAssetUpgradeable.sol - approve()
 contracts/lib/LibAssetUpgradeable.sol - decreaseAllowance()
 contracts/lib/LibAssetUpgradeable.sol - getAllowance()
 contracts/lib/LibAssetUpgradeable.sol - getBalance()
 contracts/lib/LibAssetUpgradeable.sol - increaseAllowance()
 contracts/lib/LibBytes.sol - toBool()
 contracts/lib/LibBytes.sol - toUint16()

L05-13
L39-46

L58-65
L39-46
L67-73
L17-19
L30-37

L12-14
L27-36

Issue

Type

Level

Remediation

Alleviation / Retest

 : Dead Code

 : Code With No Effects - SWC-135 
 https://swcregistry.io/docs/SWC-135

 : Informational

 : If the variables and constants are not supposed to be used anywhere,
consider removing them from the contract.

:

2

I M P A C T S

This does not impact the security aspect of the Smart contract but prevents confusion when the code is sent to other developers
or auditors to understand and implement. This reduces the overall size of the contracts and also helps in saving gas.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract was found to be doing comparisons using inequalities inside the “if”
statement. When inside the if statements, non-strict inequalities (>=, <=) are usually
cheaper than the strict equalities (>, <).

 contracts/MagpieCurveRoter.sol
 contracts/MagpieCurveRoter.sol
 contracts/MagpieCurveRoter.sol
 contracts/MagpieCore.sol
 contracts/MagpieCore.sol
 contracts/MagpieCore.sol
 contracts/MagpieCore.sol
 contracts/MagpieCore.sol
 contracts/MagpieBridge.sol
 contracts/MagpieBridge.sol

L66
L6
L129

L151
L156
L206
L209
L297

L50
L216

Issue

Type

Level

Remediation

Alleviation / Retest

 : Cheaper Inequalities in if()

 : Gas & Missing Best Practices

 : Gas

 : It is recommended to go through the code logic, and, if possible,
modify the strict inequalities with the non-strict ones to save gas as long as the logic
of the code is not affected.

:

3

I M P A C T S

Using strict inequalities inside if statements costs more gas.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contract was found to be performing comparisons using inequalities inside the

“require” statement. When inside the require statements, non-strict inequalities (>=,
<=) are usually costlier than strict equalities (>, <).

 contracts/MagpieRoter.sol
 contracts/MagpieCore.sol
 contracts/MagpieCore.sol
 contracts/MagpieCore.sol

L91
L75
L284
L286

Issue

Type

Level

Remediation

Alleviation / Retest

 : Cheaper Inequalities In Require()

 : Gas & Missing Best Practices   

 : Gas

 : It is recommended to go through the code logic, and, if possible,
modify the non-strictinequalities with the strict ones to save some gas as long as
the logic of the code is notaffected.

:

4

I M P A C T S

Using non-strict inequalities inside require statements cost more gas.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

V U L N E R A B L E C O D E

The require() statement takes an input string to show errors if the validation fails.

The strings inside these functions that are longer than 32 bytes require at least one

additional MSTORE, along with additional overhead for computing memory offset,
andother parameters. For this purpose, having strings lesser than 32 bytes saves a

significant amount of gas.Once such example is given below:

 contracts/MagpieRoter.sol L53

Issue

Type

Level

Remediation

Alleviation / Retest

 : Gas Optimization in Require Statements

 : Gas Optimization  

 : Gas

 : It is recommended to shorten the strings passed inside require()
statements to fitunder 32 bytes. This will decrease the gas usage at the time of
deployment and atruntime when the validation condition is met.

:

5

I M P A C T S

Having longer require strings than 32 bytes cost a significant amount of gas.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

Events in solidity contain two kinds of parameters - indexed and non-indexed. These
indexes are also known as topics and are the searchable parameters used in events.
In the Ethereum system, events must be easily searched for, so that applications can
filter and display historical events without the undue overhead.

It was noticed that the following event parameters were not indexed making the
search for past events cumbersome.

 contracts/interfaces/IMagpieCore.sol
 contracts/interfaces/IMagpieCore.sol
 contracts/interfaces/IMagpieCore.sol
 contracts/interfaces/IMagpieCore.sol
 contracts/interfaces/IMagpieRouter.sol
 contracts/MagpieCore.sol

L64
L66
L6
L79

L38
L26

Issue

Type

Level

Remediation

Alleviation / Retest

 : Unindexed Event Parameters

 : Missing Best Practices

 : Informational

 : It should be noted that indexed event parameters take up more gas
than non-indexed ones. Keeping that in mind, the contract should add indexed
keywords to the searchable parameters to make searching efficient using an event
filter.

:

6

I M P A C T S

This does not impact the security aspect of the Smart contract but affects the ease
of use when searching for past events.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

L O C A T I O N

The contracts were found to be setting or using new addresses without proper
validations for zero addresses.

Address type parameters should include a zero-address check otherwise contract
functionality may become inaccessible or tokens burnt forever.

Depending on the logic of the contract, this could prove fatal and the users or the
contracts could lose their funds, or the ownership of the contract could be lost.

Issue

Type

Level

Remediation

Alleviation / Retest

 : Missing Zero Address Validations

 : Missing Input Validation

 : Minor

 : Add a zero address validation to all the functions where addresses are
being set.

 :
 contracts/MagpieRouter.sol - address _magpieCoreAddress
 contracts/MagpieCore.sol - address weth
 contracts/MagpieCurveRouter.sol - exchangeArgs.receiver

L29
L50

L76

7

I M P A C T S

If address type parameters do not include a zero-address check, contract
functionality may become unavailable or tokens may be burned permanently.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

VulnerabilitiesI N - D E P T H

D E S C R I P T I O N

A F F E C T E D C O D E

Public functions that are never called by a contract should be declared external in
order to conserve gas.

The following functions were declared as public but were not called anywhere in the
contract, making public visibility useless.

The following functions were affected
 security/Pausable.sol - changePauser(
 security/Pausable.sol - pause(
 security/Pausable.sol - unpause()

L50
L69
L73

Issue

Type

Level

Remediation

Alleviation / Retest

 : Functions should be declared External

 : Gas Optimization

 : Gas

 : Use the external state visibility for functions that are never called from
inside the contract.

:

8

I M P A C T S

Smart Contracts are required to have effective Gas usage as they cost real money,
and each function should be monitored for the amount of gas it costs to make it gas
efficient.

public functions cost more Gas than external functions.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

CodeS O U R C E

P r i v a t e G i t H u b R e p o s i t o r y

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

AppendixR E P O R T

F I N D I N G C A T E G O R I E S A U D I T S C O R E S

The assessment process will utilize a mixture of static analysis, dynamic analysis, in-
depth manual review and/or other security techniques.

This report has been prepared for Magpie Protocol project using the above
techniques to examine and discover vulnerabilities and safe coding practices in
Magpie Protocol’s smart contract including the libraries used by the contract that
are not officially recognized.

A comprehensive static and dynamic analysis has been performed on the solidity
code in order to find vulnerabilities ranging from minor gas optimizations to major
vulnerabilities leading to the loss of funds.

Various common and uncommon attack vectors will be investigated to ensure that
the smart contracts are secure from malicious actors. The testing methods find and
flag issues related to gas optimizations that help in reducing the overall gas cost It
scans and evaluates the codebase against industry best practices and standards to
ensure compliance It makes sure that the officially recognized libraries used in the
code are secure and up to date.

D3ploy Audit Score is not a live dynamic score. It is a fixed value determined at the
time of the report issuance date.

D3ploy Audit Score is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. These reports and scores are not,
nor should be considered, an indication of the economics or value of any “product”
or “asset” created by any team or project that contracts d3ploy to perform a
security review.

W E B S I T E d3ploy.co T W I T T E R@d3ploy_

