
Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning

Aurick Qiao1,2, Willie Neiswanger1,2, Qirong Ho2, Hao Zhang1,2, Gregory R. Ganger1, and Eric P. Xing1,2

1Carnegie Mellon University
2Petuum, Inc.

Abstract
Pollux improves scheduling performance in deep learning
(DL) clusters by adaptively co-optimizing inter-dependent
factors both at the per-job level and at the cluster-wide level.
Most existing schedulers will assign each job a number of
resources requested by the user, which can allow jobs to use
those resources inefficiently. Some recent schedulers choose
job resources for users, but do so without awareness of how DL
training can be re-optimized to better utilize those resources.

Pollux simultaneously considers both aspects. By observing
each job during training, Pollux models how their goodput
(system throughput combined with statistical efficiency)
would change by adding or removing resources. Leveraging
these models, Pollux dynamically (re-)assigns resources to
maximize cluster-wide goodput, while continually optimizing
each DL job to better utilize those resources.

In experiments with real DL training jobs and with trace-
driven simulations, Pollux reduces average job completion
time by 25%−50% relative to state-of-the-art DL schedulers,
even when all jobs are submitted with ideal resource and
training configurations. Based on the observation that the
statistical efficiency of DL training can change over time, we
also show that Pollux can reduce the cost of training large
models in cloud environments by 25%.

1 Introduction

Deep learning (DL) training has rapidly become a dominant
workload in many shared resource environments such as
datacenters and the cloud. DL jobs are resource-intensive
and long-running, demanding distributed execution using
expensive hardware devices (eg. GPUs or TPUs) in order to
complete within reasonable amounts of time. To meet this
resource demand, dedicated clusters are often provisioned
for deep learning alone [24], with a scheduler that mediates
resource sharing between many competing DL jobs.

However, existing schedulers require users submitting jobs
to also specify training parameters that, if set incorrectly, can

greatly degrade job performance and resource efficiency. Of
these training parameters, the batch size and learning rate of
a DL job are strongly dependent on its allocation of resources,
making them particularly difficult to decide in advance in
shared-resource environments. Furthermore, an allocation of
resources that can be efficiently utilized by a DL job not only
depends on the structure of the model being trained, but also on
the batch size and learning rate. This co-dependence between
the resources, batch size, and learning rate creates a complex
web of considerations a user must make in order to configure
their job for efficient execution and resource utilization.

Fundamentally, an efficiently configured DL job strikes
a balance between two often opposing desires: (1) system
throughput, the number of training examples processed per
wall-clock time, and (2) statistical efficiency, the amount of
progress made per training example processed.

System throughput can be increased by increasing the batch
size, as illustrated in Fig. 1a. A larger batch size enables higher
utilization of more resources (eg. larger number of GPUs).
However, when the batch size is increased, the learning
rate must be re-tuned. Otherwise, statistical efficiency will
decrease so that the total training time will not be any shorter,
wasting the additionally allocated GPUs.

Even with an optimally-tuned learning rate, increasing
the batch size results in faster-decreasing statistical effi-
ciency [31, 43]. For every distinct allocation of GPUs, there is
potentially a different batch size that best balances increasing
system throughput with decreasing statistical efficiency, as
illustrated in Fig. 1b. Furthermore, how quickly the statistical
efficiency decreases with respect to the batch size depends on
the current training progress. A job in a later stage of training
can potentially tolerate 10x or larger batch sizes without de-
grading statistical efficiency, than earlier during training [31].

Thus, the best choice of batch size and learning rate depends
on the resource allocation, which in turn depends on com-
petition from other jobs sharing the cluster. In turn, the best
choice of resource allocation depends on the chosen batch size.
The batch size, learning rate, and therefore the best resource
allocation, all depend on the current training progress of the

1

ar
X

iv
:2

00
8.

12
26

0v
1

 [
cs

.D
C

]
 2

7
A

ug
 2

02
0

Hannah Yoon

5 10 15
Number of GPUs

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 (i

m
gs

/s
ec

)

Batch size
2048
512

(a) Job scalability (and therefore
resource utilization) depends on
the batch size.

2 16
Number of GPUs

0

2000

4000

6000

B
es

t b
at

ch
 s

iz
e

(im
ag

es
)

Stage of Training
First half
Second half

(b) The most efficient batch size
can depend on the allocated re-
sources and the stage of training.

Figure 1: Trade-offs between the batch size, resource
scalability, and stage of training (ResNet18 on CIFAR-10).
The learning rate is separately tuned for each batch size.

job. Therefore, we argue that the choice of resource allocations,
batch sizes, and learning rates are best made collectively and
dynamically by a knowledgeable cluster scheduler.

This paper presents Pollux, a hybrid resource scheduler that
co-adaptively allocates resources while tuning the batch size
and learning rate for every DL job in a shared cluster.
F We provide a formulation of goodput for DL jobs, which
is a performance metric that takes into account both system
throughput and statistical efficiency. A model of goodput can
be learned by observing the throughput and statistical behavior
during training, and used for predicting the performance of
DL jobs given different resource allocations and batch sizes.
F We design and implement a scheduling architecture that
locally tunes the batch size and learning rate for each DL job,
and globally optimizes cluster-wide resource allocations using
a genetic algorithm. Both components actively cooperate with
each other, and operate based on a common goal of goodput
maximization.
F Pollux not only adapts to the changes in statistical efficiency
over time, but can leverage it to reduce the cost of training
large models. In cloud environments, Pollux can provision
the right amount of resources at the right time, based on job
training progress, to maximize statistical efficiency across the
entire lifetime of a large DL job.

When compared with state-of-the-art DL schedulers using
realistic DL job traces from Microsoft, we show that Pollux
reduces the average job completion time by up to 70%. Even
when all jobs are manually tuned beforehand, Pollux reduces
the average job completion time by 25−50%. In cloud environ-
ments, Pollux reduces the cost of training ImageNet by 25%.

2 Background: Distributed DL Training

Training a deep learning model typically involves minimizing
a loss function of the form

L(w)=
1
|X | ∑xi∈X

`(w,xi), (1)

where w ∈ Rd are the model parameters to be optimized, X
is the training dataset, xi are the individual samples in the
training data, and ` is the loss evaluated at a single sample.

The loss function can be minimized using stochastic
gradient descent (SGD), which repeatedly applies the
following update until the loss converges to a stable value:

w(t+1)=w(t)−ηĝ(t). (2)

η is known as the learning rate, which is a scalar that controls
the magnitude of each update, and ĝ(t) is a stochastic gradient
estimate of the loss function L , evaluated using a random
mini-batch M(t)⊂X of the training data, as follows:

ĝ(t)=
1
|M(t)| ∑

xi∈M(t)

∇`(w(t),xi). (3)

The learning rate η and batch size m = |M(t)| are training
parameters which are typically chosen by the user.

2.1 System Throughput
The system throughput of DL training can be defined as the
number of training samples processed per unit of wall-clock
time. When a DL job is distributed across several nodes, its sys-
tem throughput is determined by several factors, including (1)
the allocation and placement of resources assigned to the job,
(2) the method of distributed execution and synchronization,
and (3) the batch size used by the SGD algorithm.
Data-parallel execution. Data-parallelism is a popular
method of distributed execution for DL training. The model
parameters w(t) are replicated across a set of distributed GPUs
1,...,K, and each mini-batch M(t) is divided into equal-sized
partitions per node, M(t)

1 , ... ,M(t)
K . Each GPU k computes a

local gradient estimate ĝ(t)k using its own partition, as follows:

ĝ(t)k =
1

|M(t)
k |

∑
xi∈M(t)

k

∇`(w(t),xi). (4)

These local gradient estimates are then averaged across all
replicas to obtain the desired ĝ(t), as defined by Eqn. 3. Finally,
each node applies the same update using ĝ(t) to obtain the new
model parameters w(t+1), as defined by Eqn. 2.

The run-time of each training iteration is determined by
two main components. First, the time spent computing the
local gradient estimates ĝ(t)k , which we denote by Tgrad . For
neural networks, this computation is done using backprop-
agation [41]. Second, the time spent averaging the local
gradients and synchronizing the model parameters across all
job replicas, which we denote by Tsync. This synchronization is
typically done using a collective all-reduce operation [36, 42],
or a set of parameter servers [7, 8, 21]. Tsync can be influenced
by the placement of replicas, and is typically smaller when
the replicas are co-located within the same physical node or
rack, rather than spread across different nodes or racks.

2

Limitations due to the batch size. The batch size used during
training determines the upper limit on the system throughput.
When the number of replicas is increased, each replica will
process a smaller partition of the overall mini-batch, resulting
in a proportionally smaller Tgrad . On the other hand, Tsync is
typically dependent on the size of the gradients and model pa-
rameters, rather than the batch size or number of replicas. Due
to Amdahl’s Law, no matter how many replicas are used, the
run-time of each training iteration is lower bounded by Tsync.

To overcome this scalability limitation, it is desirable to
increase the batch size, which allows a larger proportion of
time to be spent computing the local gradient estimates as
opposed to synchronizing gradients and parameters over the
network. Thus, using a larger batch size enables higher system
throughput when scaling to more data-parallel replicas.

2.2 Statistical Efficiency

The statistical efficiency of DL training can be defined as the
amount of training progress made per unit of data processed.
Parameters such as batch size and learning rate influence
this quantity. For example, when the batch size is increased,
the efficiency will decrease (by an amount that depends on
how the learning rate is comparatively scaled). Here, we give
background on previous work that expresses the statistical
efficiency in terms of a quantity called the gradient noise
scale. We then describe adaptive scaling rules that have been
developed to set the learning rate with respect to the batch size,
to achieve high statistical efficiency.

In Pollux, the gradient noise scale will be used to define a
measure of statistical efficiency for a given choice of batch
size, which will allow us to evaluate and optimize the goodput.
Relatedly, adaptive scaling rules will be used to dynamically
choose an appropriate learning rate with respect to the current
batch size during this optimization.
Gradient Noise Scale. Previous work [25, 31], has aimed
to characterize the statistical efficiency of DL training in
terms of the gradient noise scale ϕt , which can be intuitively
viewed as a measure of the signal-to-noise ratio of gradient
across training examples at iteration t [31]. A larger ϕt means
that training parameters such as the batch size and learning
rate can be increased to higher values with relatively less
reduction of the statistical efficiency. The gradient noise
scale can vary greatly between different DL models [13]. It
is also non-constant and tends to gradually increase during
training, by up to 10× or more [31]. Thus, it is possible to
attain significantly better statistical efficiency for a large batch
size later on in training. A knowledgeable scheduler like
Pollux can adaptively scale training parameters for the right
DL jobs at the right times, to better accommodate for their
model-dependent and time-varying levels of efficiency.
Learning Rate Scaling and Adascale SGD. If the batch
size is increased, the learning rate must also be scaled up
to maintain a high statistical efficiency. One way to adjust

the learning rate η with respect to the batch size m is by
using simple scaling rules. For example, the linear scaling
rule [30] prescribes that η be scaled proportionally with m,
while the square-root scaling rule prescribes that η be scaled
proportionally with

√
m. Correctly scaling the learning rate

can improve statistical efficiency when training with large
batch sizes, and result in orders-of-magnitude improvements
to DL scalability and job completion time [15, 37, 47].

However, simple learning rate scaling rules cannot be used
for predicting the statistical efficiency of a particular batch
size and learning rate ahead of time. Thus, they are unable
to provide the knowledge required by a cluster scheduler to
jointly optimize resource allocations with batch sizes. Instead
of scaling the learning rate by a constant factor for each batch
size, AdaScale [25] scales the learning rate adaptively based
on ϕt . Suppose a DL training job is run with batch size m0. If
the same job is run using a larger batch size m>m0, then at
iteration t, AdaScale scales the learning rate by the factor

rt =(ϕt/m0+1)/(ϕt/m+1), (5)

where we describe how ϕt is computed in Sec. 3.1. AdaScale
has been shown to outperform the linear scaling rule for a
wide variety of DL models and batch sizes.

For resource scheduling, the most important characteristic
of AdaScale is its predictability. One iteration of AdaScale
training with batch size m is approximately equivalent to rt
iterations of training with the original m0. This property can
be leveraged to measure statistical efficiency during training,
and to predict its value before scaling to different batch sizes,
as described in Sec. 3.1.

2.3 Existing DL Schedulers
We broadly group existing DL schedulers into two categories.
First, non-resource-adaptive schedulers are agnostic to the
throughput scalability of DL jobs with respect the the amount of
allocated resources. For example, Tiresias [16] does not require
any knowledge about the throughput of each job if allocated dif-
ferent numbers of GPUs. Instead, users specify the number of
GPUs at the time of job submission, which will be fixed for the
lifetime of the job. Tiresias may preempt jobs to prevent head-
of-line blocking, and co-locate job replicas for more efficient
synchronization. Gandiva [46] is another DL scheduler which
requires user-specified number of GPUs, but is able to optimize
resource utilization through fine-grained time sharing and job
packing. Although Gandiva is able to dynamically grow or
shrink the number of GPUs used by a job, it only does so op-
portunistically, and not based on knowledge of job scalability.

Second, only-resource-adaptive schedulers automatically
decide the amount of resources allocated to each job based on
how well they can be utilized to speed up the job. For example,
Optimus [38] learns a predictive model for the system through-
put of each job given various amounts of resources, and
optimizes cluster-wide resource allocations to minimize the

3

average job completion time. SLAQ [49], which was not eval-
uated on deep learning, uses a similar technique to minimize
the average loss values for training general ML models.

All existing schedulers are agnostic to the statistical
efficiency of DL training. The batch size and learning rate
are left for the users to tune at the application-level, which as
previously discussed, can be difficult to do efficiently.

3 The Goodput of DL Training

We present how goodput1 can be defined, measured, and
predicted for DL jobs, taking into account both system
throughput and statistical efficiency. Goodput predictions are
leveraged by Pollux to jointly optimize cluster-wide resource
allocations and batch sizes.

Definition 3.1. (Goodput) The goodput of a DL job at iteration
t is the product between its system throughput and its statistical
efficiency at iteration t.

GOODPUTt(a,m)=THROUGHPUT(a,m)×EFFICIENCYt(m)
(6)

a∈RN is an allocation vector, where an is the number of GPUs
allocated from node n, and m is the batch size.

An initial batch size m0 and learning rate η0 are selected
by the user when submitting their job. Pollux will start each
job using a single GPU, m=m0, and η=η0. As the job runs,
Pollux profiles its execution to learn and refine predictive
models for both THROUGHPUT (Sec. 3.2) and EFFICIENCY

(Sec. 3.1). Using these predictive models, Pollux periodically
re-tunes a and m for each job, according to cluster-wide
resource availability and performance (Sec. 4.2). The learning
rate η is re-tuned using AdaScale (Sec. 2.2).

Goodput and statistical efficiency are measured relative to
the initial batch size m0 and learning rate η0, and Pollux only
considers batch sizes which are at least the initial batch size,
ie. m ≥ m0. In this scenario, statistical efficiency is always
between 0 and 1, and can be interpreted as a percentage
relative to the initial batch size m0. Therefore, goodput is
always less than or equal to the throughput, being equal only
if perfect statistical efficiency is achieved.

3.1 Modeling Statistical Efficiency
The statistical efficiency of a DL job using batch size m≥m0
is the amount of progress made per training example using m,
relative to using m0. This quantity can be framed in terms of
the gradient noise scale ϕt . Specifically, [31] formulates the
amount of training progress that can be made in a single update
using a batch of size m relative to the amount of progress made
with a batch of size m0. Similarly, Adascale’s [25] rt (Sec. 2.2)
is also the relative training progress made using batch size m

1Our notion of goodput for DL is analogous to the traditional definition
of goodput in computer networking, ie. the fraction of useful throughput.

0 20 40 60 80
Epochs (statistical)

0.25

0.50

0.75

1.00

St
at

. e
ff

ic
ie

nc
y

Batch size
800
8000

(a) Efficiency vs training progress
using different batch sizes.

103 104

Batch size (images)

0.6

0.8

1.0

St
at

. e
ff

ic
ie

nc
y

Actual
Model

(b) Actual efficiency vs predicted
efficiency using Eqn. 7.

Figure 2: Statistical efficiency for training ResNet-50 on
ImageNet. In Fig. 2a, each “statistical epoch” measures the
same training progress across different batch sizes. In Fig. 2b,
predictions are based on the value of ϕt measured using a
batch size of 4000 images at epoch 15.

versus m0. In Appendix A, we show an equivalence between
the formulations of efficiency given by both papers, and we can
use these to write a concrete measure of statistical efficiency as

EFFICIENCYt(m)=rtm0/m=(ϕt+m0)/(ϕt+m). (7)

Here, we can write the gradient noise scale as ϕt =m0σ2
t /µ2

t ,
where σ2

t = Var[ĝ(t)] is the variance and µ2
t = |E[ĝ(t)]|2 the

squared norm of the gradient at iteration t using batch size m0.
Intuitively, Eqn. 7 measures the contribution from each train-

ing example to the overall progress. If EFFICIENCYt(m)=E,
then (1) 0 < E ≤ 1, and (2) training using batch size m will
need to process 1/E times as many training examples to make
the same progress as using batch size m0.

During training, Pollux estimates the values of σt and
µt to compute ϕt , then uses Eqn 7 to predict the statistical
efficiency at different batch sizes. The true values of σt
and µt vary according to the training progress at iteration t,
thus EFFICIENCYt(m) reflects the lifetime-dependent trends
exhibited by the true statistical efficiency.

Fig. 2a shows an example of statistical efficiency measured
for ImageNet training. First, a larger batch size results in lower
statistical efficiency, but the gap narrows during the later phases
of training. Second, how the statistical efficiency changes
over time depends on details of the training procedure. In this
case, the statistical efficiency increases dramatically when the
learning rate is decayed by a factor of 10 at epochs 30 and 60,
following the standard configuration for training ImageNet.

Fig. 2b shows the measured statistical efficiency at different
batch sizes, compared with the statistical efficiency predicted
by Eqn. 7 using ϕt measured at a fixed batch size. We find
close agreement between the measured and predicted values
across a range of different batch sizes, which indicates
that EFFICIENCYt(m) can be used by Pollux to predict the
statistical efficiency at a different batch size without needing
to train using that batch size ahead of time.

Estimating σt and µt . The standard way of estimating
σt and µt involves calculating the sample variance of the
local gradient estimates ĝ(t)k at each iteration [25, 31]. This

4

2 4 6 8
Number of Nodes

750

1000

1250

1500

Im
ag

es
 /

se
c

Actual
Model

(a) Throughput vs. nodes.

1000 2000 3000
Batch size (images)

1000

2000

3000

Im
ag

es
 /

se
c

Actual
Model

(b) Throughput vs batch size.

Figure 3: Our throughput model (Eqn. 8) fit to measured
throughput values for ImageNet training.

can be done efficiently when there are multiple data-parallel
processes, by using the different values of ĝ(t)k already
available on each process. However, this method doesn’t work
when there is only a single process. In this particular situation,
Pollux switches to a differenced variance estimator [45] which
uses consecutive gradient estimates ĝ(t−1) and ĝ(t).

3.2 Modeling System Throughput
To model and predict the system throughput for data-parallel
DL, we aim to predict the time spent per training iteration,
Titer, given an allocation vector a and batch size m, and then
calculate the throughput as

THROUGHPUT(a,m)=m/Titer(a,m). (8)

We start by separately modeling Tgrad , the time in each
iteration spent computing local gradient estimates, and Tsync,
the time in each iteration spent averaging gradient estimates
and synchronizing model parameters across all GPUs.

Modeling Tgrad . The local gradient estimates are computed
using back-propagation, whose run-time scales linearly with
the local batch size in each process. Thus, we model Tgrad as

Tgrad(a,m)=αgrad+βgrad ·m/K, (9)

where m is the overall batch size, K =∑nan is the number of
allocated GPUs, and αgrad and βgrad are learnable parameters.

Modeling Tsync. When K = 1, then no synchronization is
needed and Tsync = 0. Otherwise, we model Tsync as a linear
function of K. We choose choose a linear model because in
strict data-parallelism, the amount of data sent and received
from each replica is typically constant with respect to the size of
the gradients and/orparameters. We include a linear factor to ac-
count for performance retrogressions associated with larger K,
such as increasing likelihood of stragglers or network delays.

Since synchronization requires network communication
between replicas, co-location of those replicas on the same
node can significantly improve Tsync. Thus, we use different
parameters depending on the placement.

Tsync(a,m)=

0 if K=1
αlocal

sync +βlocal
sync ·(K−2) if N=1, K≥2

αnode
sync +βnode

sync ·(K−2) otherwise,
(10)

where N is the number of physical nodes occupied by at least
one replica. αlocal

sync and βlocal
sync are the constant and retrogression

parameters for when all processes are co-located onto the
same node. αnode

sync and βnode
sync are the analogous parameters

for when at least two process are located on different nodes.
Note that our model for Tsync can be extended to account for
rack-level locality by adding a third pair of parameters.

Combining Tgrad and Tsync. Modern DL frameworks can
partially overlap Tgrad and Tsync by overlapping gradient
computation with network communication [48]. The degree
of this overlap depends on structures in the specific DL model
being trained, like the ordering and sizes of its layers.

Assuming no overlap, then Titer =Tgrad+Tsync. Assuming
perfect overlap, then Titer =max(Tgrad ,Tsync). A realistic value
of Titer is somewhere in between these two extremes. To
capture the overlap between Tgrad and Tsync, we model Titer as

Titer(a,m)=
(
Tgrad(a,m)γ+Tsync(a)γ

)1/γ
, (11)

where γ≥1 is a learnable parameter. Eqn. 11 has the property
that Titer =Tgrad+Tsync when γ=1, and smoothly transitions
towards Titer =max(Tgrad ,Tsync) as γ→∞.

Fig. 3 shows an example of our THROUGHPUT function fit to
measured throughput values for a range of resource allocations
and batch sizes. We find that our model can represent the
observed data closely, while varying both the amount of
resources as well as the batch size. In Sec. 4.1, we describe
how we fit our throughput model to values measured during
training, and then used to predict training throughput for
different resource allocations and batch sizes.

4 Pollux Design and Architecture

Compared with existing DL schedulers, Pollux performs
adaptation at two distinct granularities. First, at a job-level
granularity, Pollux dynamically tunes the batch size and
learning rate for best utilization of the allocated resources.
Second, at the cluster-wide granularity, Pollux dynamically
re-allocates resources, driven by the goodput of all jobs
sharing the cluster. To achieve this co-adaptivity in a scalable
way, Pollux’s design consists of two primary components.

First, a PolluxAgent runs together with each job. It measures
the gradient noise scale and system throughput for that job, and
tunes its batch size and learning rate for efficient utilization
of its current allocated resources. PolluxAgent periodically
reports the goodput function of its job to the PolluxSched.

Second, the PolluxSched periodically optimizes the
resource allocations for all jobs in the cluster, taking into
account the current statistical efficiency for each job. It uses
the goodput function to predict a job’s training performance
when allocated different resources.

PolluxAgent and PolluxSched co-adapt to each other.
While PolluxAgent adapts each training job to make efficient
use of its allocated resources, PolluxSched dynamically

5

Scheduler

Node 1 Node 2

Start job
Pre-empt job
Resume job

Job 1 Job 2

(a) Non-resource-adaptive.

Scheduler

Node 1 Node 2

Model of job
throughputs

Dynamically
re-allocate
resources

Job 1
Profiler

Job 2
Profiler

(b) Only-resource-adaptive.

Job ReplicaJob Replica

PolluxSched

Node 1 Node 2

Job 1
Agent

Job 2
Agent

Model of job
goodputs

PolluxAgent

GPU GPU

Profiler Tuner &
AdaScale

To PolluxSched
(𝜭sys, 𝝋)

(𝜭sys, 𝝋)

Batch size &
Learning rate

Dynamically
re-allocate
resources

(c) Co-adaptive (Pollux).

Figure 4: Architecture of Pollux (Fig. 4c), compared with
existing schedulers which are either non-resource-adaptive
(Fig. 4a) or only-resource-adaptive (Fig. 4b).

re-allocates each job’s resources, taking into account the
PolluxAgent’s ability to tune its job.

Fig. 4 illustrates Pollux’s co-adaptive architecture (Fig. 4c),
compared with existing schedulers which are either non-
adaptive (Fig. 4a), or resource-adaptive without being involved
with statistical efficiency (Fig. 4b).

4.1 PolluxAgent: Job-level Optimization
An instance of PolluxAgent is started with each training job.
During training, it continually measures the job’s gradient
noise scale and system throughput, and reports them to
PolluxSched at a fixed interval. It also uses this information
to determine the most efficient batch size for its job given its
current resource allocations, and adapts its job’s learning rate
to this batch size using AdaScale.
Online model fitting. In Sec. 3.2, we defined the system
throughput parameters of a training job as the 7-tuple

θsys=
(

αgrad ,βgrad ,α
local
sync ,β

local
sync ,α

node
sync ,β

node
sync ,γ

)
, (12)

which are required to construct the THROUGHPUT function.
Together with the gradient noise scale ϕt and initial batch size
m0, the triple (θsys,ϕt ,m0) specifies the GOODPUT function.
While m0 is a constant configuration provided by the user, and
ϕt can be computed according to Sec. 3.1, θsys is estimated

by fitting the THROUGHPUT function to observed throughput
values collected about the job during training.

PolluxAgent measures the time taken per iteration, Titer,
and records the triple (a, m, Titer) for all combinations of
resource allocations a and batch size m encountered during
its lifetime. Periodically, PolluxAgent fits the parameters
θsys to all of the throughput data collected so far. Specifically,
we minimize the root mean squared logarithmic error
(RMSLE) between Eqn. 11 and the collected data triples, using
L-BFGS-B [50]. We set constraints for each α and β parameter
to be non-negative, and γ to be in the range [1,10]. PolluxAgent
then reports the updated values of θsys and ϕt to PolluxSched.
Prior-driven exploration. At the beginning of each job,
throughput values have not yet been collected for many
different resource allocations. To ensure that Pollux finds
efficient resource allocations through systematic exploration,
we impose several priors which bias θsys towards the belief
that throughput scales perfectly with more resources, until
such resource configurations are explored.

In particular, we set αlocal
sync = 0 while the job had not used

more than one GPU, αlocal
sync =βlocal

sync =0 while the job had not
used more than one node, and βlocal

sync =βnode
sync =0 while the job

had not used more than two GPUs. This creates the following
behavior: each job starts with a single GPU, and is initially
assumed to scale perfectly to more GPUs. PolluxSched is then
encouraged to allocate more GPUs and/or nodes to the job,
naturally as part of its resource optimization (Sec. 4.2), until
the PolluxAgent can estimate θsys more accurately. Finally, to
prevent a job from being immediately scaled out to arbitrarily
many GPUs, we restrict the maximum number of GPUs which
can be allocated to at most twice the maximum number of
GPUs the job has been allocated in its lifetime.
Training job tuning. With θsys, mgns, and m0, which fully
specify the DL job’s GOODPUT function at its current training
progress, PolluxAgent determines the most efficient batch size,

m∗=argmax
m

GOODPUT(a,m), (13)

where a is the job’s current resource allocation. To perform this
maximization efficiently, we observe that GOODPUT(a,m) is
a unimodal function of m, and use golden-section search [27]
to find its maximum.

Once a new batch size is found, the job will use it for its
subsequent training iterations, using AdaScale to adapt its
learning rate appropriately. As the job’s statistical efficiency
changes over time, PolluxAgent will periodically re-evaluate
the most efficient batch size and learning rate.

4.2 PolluxSched: Cluster-wide Optimization
The PolluxSched periodically allocates (or re-allocates)
resources for every job in the cluster. To determine a set of
efficient cluster-wide resource allocations, it uses a genetic
algorithm to maximize a fitness function which is defined as
a weighted mean across speedups for each job:

6

FITNESS(A)=
∑ jw j ·SPEEDUP j(A j)

∑ jw j
. (14)

A is an allocation matrix with each row A j being the placement
vector for a job j, thus A jn is the number of GPUs on node n
allocated to job j. Intuitively, maximizing FITNESS causes
PolluxSched to allocate more resources to jobs that achieve a
high SPEEDUP when provided with many GPUs (i.e. jobs that
scale well). We define the speedup of each job as the factor of
goodput improvement using the given placement vector over
using a single process with the optimal batch size, ie.

SPEEDUP j(A j)=
maxmGOODPUT j(A j,m)

maxmGOODPUT j(1,m)
, (15)

where GOODPUT j is the goodput of job j at its current training
iteration. Our definition of SPEEDUP j has the property that
allocating a single GPU always results in a speedup of 1,
and scales sub-linearly with increasing numbers of allocated
GPUs. Similar to the PolluxAgent, PolluxSched performs
the maximizations in the numerator and denominator using
golden-section search [27].
Job weights. Although PolluxSched can work well with all
weights w j set to 1, we provide the ability to re-weight jobs
as an additional tuning knob for cluster operators. Since large
jobs may take up a significant fraction of cluster resources for
extended amounts of time, smaller jobs may be left with fewer
resources available. Depending on the preference between
large jobs versus small jobs, a cluster operator can address this
issue by decreasing the weight of jobs according to the amount
of GPU-time already spent on them. In particular, we define
the weight w j of job j as

w j =min
(

1,
GPUTIME_THRES
GPUTIME(j)

)λ

. (16)

The weight of a job is 1 if its current total GPU-time is at
most GPUTIME_THRES, and decays gradually thereafter. The
parameter λ controls the rate of decay, with λ = 0 being no
decay, and larger values being faster decay. We further study
the effect of job weights in Sec. 5.3.2.

4.2.1 Genetic Algorithm

Our genetic algorithm operates on a population of distinct
allocation matrices (see Fig. 5). During each generation of
the algorithm, existing allocation matrices are first randomly
mutated, then crossed over to produce offspring allocation ma-
trices, and finally modified to satisfy node resource constraints.
A constant population size is maintained after each generation
by discarding the allocation matrices with the lowest objective
values (according to Eqn. 14). After several generations of
the genetic algorithm, the allocation matrix with the highest
fitness score is applied to the jobs running in the cluster.

We describe the genetic algorithm operations in detail
below, which are illustrated in Fig. 5.

Mutation. Each element A jn is mutated with probability 1/N,
where N is the total number of nodes. Thus, each job suffers
on average one mutation in each generation. When A jn is
mutated, it is set to a random integer between 0 and the total
number of GPUs on node n.
Crossover. When two allocation matrices are crossed over,
their rows are randomly mixed. In other words, the offspring
allocation matrix consists of job allocations which are
randomly selected between its two parent allocation matrices.
In each generation, the allocation matrices which participate
in crossover are picked using tournament selection [32].
Repair. After the mutation and crossover operations, the re-
sultant allocation matrices may no longer satisfy resource con-
straints, and try to request more GPUs than are available on a
node. To address this issue, random elements are decremented
within columns of the allocation matrix that correspond to over-
capacity nodes, until the GPU resource constraints are satisfied.
Penalty. Each time a job is re-allocated to a different set of
GPUs, it will need to save a checkpoint of its current model
parameters, and restart using its new allocation of GPUs. This
process can typically take 30s-60s depending on the size of
the model being trained. To prevent an excessive number
of re-allocations, when PolluxSched evaluates the fitness
function for a given allocation matrix, it applies a penalty for
every job that needs to restart, i.e.

SPEEDUP j(A j)←−SPEEDUP j(A j)−RESTART_PENALTY.

Interference avoidance. When multiple distributed DL jobs
share a single node, their network usage while synchronizing
gradients and model parameters may interfere with each other,
causing both jobs to slow down [24]; Xiao et al. [46] report
up to 50% slowdown for DL jobs which compete with each
other for network resources. PolluxSched mitigates this issue
by disallowing different distributed jobs (each using GPUs
across multiple nodes) from sharing the same node.

This non-interference constraint is implemented as part of
the repair step of the genetic algorithm (Sec. 4.2.1), by also
removing distributed jobs from shared nodes until at most one
distributed job is allocated to each node. We study the effects
of interference avoidance in Sec. 5.3.2.

4.2.2 Cloud Auto-scaling

In cloud computing environments, GPU nodes can be dynam-
ically provisioned during periods of high demand to decrease
job completion time, as well as released during periods of low
demand to decrease cost of cluster resources. Beyond adapting
to the number and sizes of DL jobs, co-adaptive scheduling
presents an unique opportunity for cluster auto-scaling.
Since many distributed DL jobs tend to increase in statistical
efficiency as training progresses, it may be more cost-effective
to provision more cloud resources during the later iterations
of a large training job, rather then earlier on.

7

✗
discard

✓
keep

FITNESS = 5

FITNESS = 3

Node 1 Node 2 Node 3

Job 1 Job 2 Job 3

Node 1 Node 2 Node 3

Job 1 Job 2 Job 3

Node 1 Node 2 Node 3

Job 1 Job 2 Job 3

Node 1 Node 2 Node 3

Job 1 Job 2 Job 3

3 1 0
0 2 0
0 0 3
Nodes

Jo
bs

2 0 0
1 2 0
0 1 3
Nodes

Jo
bs

3 2 0
1 2 0
0 0 2

3 0 0
0 2 1
0 1 3

3 2 0
0 2 1
0 0 2

3 0 0
1 2 0
0 1 3

3 2 0
0 1 1
0 0 2
Nodes

Jo
bs

3 0 0
0 2 0
0 1 3
Nodes

Jo
bs

Mutate

Mutate

Crossover

Repair

Repair

Figure 5: The mutation, crossover, and repair operations performed by PolluxSched during each generation of its genetic algorithm.

In order to decide when to request or release nodes in the
cloud, we first define a measure of cluster resource utility for
a given allocation matrix as

UTILITY(A)=
∑ jSPEEDUP j(A j)

TOTAL_GPUS
(17)

Since each SPEEDUP j is at most equal to the number of GPUs
allocated to job j, then ∑ jSPEEDUP j(A j)≤TOTAL_GPUS, and
thus 0≤UTILITY(A)≤1.

A cluster operator defines a LOW_UTIL_THRES and a
HIGH_UTIL_THRES. PolluxSched will request additional
nodes (when UTILITY(A) is high) or release existing nodes
(when UTILITY(A) is low) until UTILITY(A) falls within
this range, where A is the current allocations applied in the
cluster. The cluster operator also defines a MIN_NODES and
MAX_NODES, which limit the size of the cluster.

PolluxSched performs a binary search for the desired
number of nodes, with the assumption that UTILITY decreases
with increasing numbers of nodes. At each step of the
binary search, PolluxSched runs its genetic algorithm to
evaluate the UTILITY of the cluster size being queried. In
the end, the cluster size with a UTILITY value closest to
(LOW_UTIL_THRES+HIGH_UTIL_THRES)/2 is selected.

4.3 Implementation
PolluxAgent is implemented as a Python library which is
imported into DL training code. We integrated PolluxAgent
with PyTorch [36], which uses all-reduce as its gradient
synchronization algorithm. PolluxAgent inserts performance
profiling code which measures the time taken for each iteration
of training, as well as calculating the gradient noise scale. At
a fixed time interval, PolluxAgent fits the system throughput
model (Eqn. 11) to the profiled metrics collected so far, and
reports the fitted system throughput parameters, along with
the latest gradient statistics, to PolluxSched. After reporting
to PolluxSched, PolluxAgent updates the job’s batch size, by
optimizing its now up-to-date goodput function (Eqn. 6) with
its currently allocated resources.

PolluxSched is implemented as a service in Kubernetes [2].
At a fixed time interval, PolluxSched runs a fixed number of
generations of its genetic algorithm. It then applies the best
allocation matrix to the cluster, by creating and terminating
Kubernetes Pods which run the job replicas. Although only the

allocation matrix with the highest fitness score is applied to
the cluster, the entire population is saved and used to bootstrap
the genetic algorithm in the next scheduling interval. The
genetic algorithm is implemented using pymoo [6].

5 Evaluation

The primary value of Pollux is automatically choosing the
right resource allocations, and adapting the batch size and
learning rate of each job to best utilize those resources. In
comparison, existing schedulers rely on users to specify these
training parameters with well-configured values, which is
unrealistic and often requires expert knowledge about the DL
model structure and statistical behavior during training.

However, the ability of users to configure their jobs for effi-
cient training is difficult to quantify. Thus, we compare Pollux
with state-of-the-art DL schedulers from two perspectives.
First, in Sec. 5.2, we construct a workload with ideally config-
ured jobs, and show that Pollux still outperforms the baseline
DL schedulers in this scenario. In Sec. 5.3.1, we show how the
performance of Pollux and the baseline DL schedulers change
when realistically configured jobs are added to the workload.

5.1 Methodology
Unless stated otherwise, we configured PolluxSched to use
a 60s scheduling interval. During each scheduling interval,
we run the genetic algorithm for 100 generations using a
population of 100 allocation matrices. We set GPUTIME_THRES
to 4 GPU-hours with λ = 0.5, and RESTART_PENALTY to
0.25. We configured PolluxAgent to report up-to-date system
throughput parameters and gradient statistics every 30s.
Workload. We constructed our synthetic workload by
sampling jobs from the deep learning cluster traces published
by Microsoft [24]. Each job has information on its submission
time, number of GPUs, and duration. However, no information
is provided on the model architectures being trained or dataset
characteristics. Instead, our synthetic workload consists of
the models and datasets described in Table 1.

We categorized each job in the trace and in Table 1 based on
their total GPU-time, calculated as the product between their
duration and number of GPUs, into four categories — Small
(0 to 1 GPU-hours), Medium (1 to 10 GPU-hours), Large (10
to 100 GPU-hours), and XLarge (100 to 1000 GPU-hours).

8

Task Dataset Model(s) Validation Metric Category Frac. of Workload
Image Classification ImageNet [9] ResNet-50 [19] 75% top-1 accuracy X-Large 2%

Object Detection PASCAL-VOC [11] YOLOv3 [40] 82% mAP score Large 5%
Speech Recognition CMU-ARCTIC [28] DeepSpeech2 [3] 25% word error Medium 17%
Image Classification Cifar10 [29] ResNet18 [19] 94% top-1 accuracy Small 38%

Collaborative Filtering MovieLens [18] NeuMF [20] 71.5% hit rate Small 38%

Table 1: Models and datasets used in our evaluation workload. Each model was trained until the provided validation metric. The
fraction of jobs from each category are chosen according to the public Microsoft cluster traces.

0 5 10 15 20
Time (hour)

0

2000

4000

6000

Su
bm

is
si

on
s

Figure 6: Number of job submissions during each hour of the
day in the Microsoft trace. Our primary synthetic workload
is sampled from the interval between the dashed lines.

We then picked a model and dataset from Table 1 which is in
the same category as the corresponding job in the trace.

The primary workload used in our evaluation consists of
160 job submissions randomly sampled from an 8-hour period
which includes the peak rate of job submissions during an
average 24-hour day. Job submissions peak during the fourth
hour, at 3× the rate of the first hour (Fig. 6).
Testbed. We conduct experiments using a cluster consisting
of 16 nodes and 64 GPUs. Each node is an AWS EC2
g4dn.12xlarge instance with 4 Tesla T4 GPUs, 48 vCPUs,
192GB memory, and a 900GB SSD. All instances are launched
within the same placement group. We deployed Kubernetes
1.18.2 on this cluster, along with CephFS 14.2.8 to store
checkpoints for checkpoint-restart elasticity.
Simulator. We built a discrete-time cluster simulator to study
the effects of the techniques proposed in Pollux. Our simulator
reproduces the system throughput of the jobs in our workload,
using different batch sizes, numbers of GPUs, and different
placements of GPUs across nodes. It also reproduces the
gradient noise scale across the lifetime of each job, enabling
statistical efficiency to be calculated using the simulator. More
details of our simulator can be found in Sec. 5.3.

5.2 Testbed Experiments
We compare Pollux to idealized versions of two state-of-the-art
deep learning schedulers, Tiresias [16] and Optimus [38],
as described in Sec. 2.3. Tiresias is non-resource-adaptive,
while Optimus is only-resource-adaptive. Whereas Pollux
dynamically adapts the number of GPUs and batch sizes of DL
jobs, Optimus only adapts the number of GPUs, and Tiresias
adapts neither. To establish a fair baseline for comparison, we
tune the learning rate using AdaScale for all three schedulers.

Tiresias+TunedJobs. Tiresias requires both the number of
GPUs and batch size be set by the user at the time of job
submission. We manually tuned the number of GPUs and
batch sizes for each job in our synthetic workload, as follows.
We measured the time per training iteration for each model in
Table 1 using a range of GPU allocations and batch sizes, and
fully trained each model using a range of different batch sizes
(see Sec. 5.3 for details). We considered a number of GPUs
valid if using the optimal batch size for that number of GPUs
achieves 50% – 80% of the ideal speedup versus using the
optimal batch size on a single GPU, where the ideal speedup
is defined to be equal to the number of GPUs. For each job
in our workload, we then selected the number of GPUs and
batch size randomly from its set of valid configurations.

Our job configurations essentially assume that the users
are highly rational and knowledgeable about the scalability
of the models they are training. A speedup of less than 50%
of the ideal would lead to under-utilization of resources, and
a speedup of more than 80% means the job can still be further
parallelized efficiently. We emphasize that this assumption
of uniformly sophisticated users is unrealistic in practice and
only serves for evaluating the performance of Tiresias in an
ideal world.
Optimus+Oracle. For Optimus, we use the same batch sizes
for each job as for Tiresias. However, since Optimus automati-
cally decides resource allocations, the number of GPUs set for
each job is ignored. If a job’s batch size does not fit on a single
GPU, we additionally enforce a minimum number of GPUs,
such that the total batch size will fit on that many GPUs.

Like Pollux, Optimus leverages a performance model to
predict the throughput of each job given different amounts of
cluster resources. However, its performance model is specific to
the parameter server architecture for synchronizing gradients.
To account for this difference, our implementation of Optimus
uses our own throughput model as described in Sec. 3.2.

Furthermore, Optimus leverages a prediction of the number
of training iterations until convergence, by fitting a simple
function to the model’s convergence curve. However, training
realistic models to an acceptable quality, including the ones in
our workload, requires learning rate decay schedules that make
the convergence curve non-smooth and difficult to extrapolate
from. To eliminate any mispredictions, and for the purposes
of our evaluation, we run each job ahead of time, and provide
Optimus with the exact number of iterations until completion.

9

Policy Job Completion Time Makespan
Average 99%tile

Pollux 1.2h 8.8h 20h
Optimus+Oracle 1.6h 11h 24h

Tiresias+TunedJobs 2.4h 16h 33h

Table 2: Summary of testbed experiments. Even in the unre-
alistic scenario where each job is ideally-tuned before being
submitted, Pollux still outperforms baseline DL schedulers.

5.2.1 Results

Even when every job is pre-configured with an ideal number
of GPUs and batch size, Pollux outperforms both Opti-
mus+Oracle and Tiresias. Table 2 shows the detailed results.
Pollux achieves 25% lower average JCT and 17% shorter
makespan than Optimus+Oracle, and 50% lower average
JCT and 39% shorter makespan than Tiresias. We observe
similar differences for tail JCTs—Pollux achieves a 20% and
45% lower 99th percentile JCT than Optimus+Oracle and
Tiresias+TunedJobs, respectively.

On average, we measured that Pollux maintained ≈ 91%
statistical efficiency across all jobs running in the cluster at
any given time, while Optimus+Oracle and Tiresias could
only maintain≈74%. Since the jobs in our workload already
use the most efficient fixed batch size, this result indicates
that Pollux is able to adaptively tune the batch size to achieve
better statistical efficiency.

Furthermore, we find that over the lifetime of each job,
Pollux achieves on average 1.2× and 1.5× higher throughput
than Optimus+Oracle and Tiresias+TunedJobs, respectively.
This is due to the fact that Pollux may increases the batch
size to take advantage of more GPUs when allocated. In
terms of goodput, the improvement for Pollux is wider, being
on average 1.4× and 2× higher than Optimus+Oracle and
Tiresias+TunedJobs, respectively.

5.3 Simulator Experiments

We use a cluster simulator in order to evaluate a broader set
of workloads and settings. Our simulator is constructed by
measuring the performance and gradient statistics of each
model in Table 1, under many different resource and batch size
configurations, and re-playing them for each simulated job.
This way, we are able to simulate both the system throughput
and statistical efficiency of the jobs in our workload.

Unless stated otherwise, each experiment in this section
is repeated 8 times on different traces generated using the
same duration, number of jobs, and job size distributions as in
Sec. 5.2, and we report the average results across all 8 traces.
Simulating system throughput. We measured the time per
training iteration for all allocations of GPUs in a 4-node cluster
with 4 GPUs each, removing symmetric placements. For each
allocation, we used a range of batch sizes, spaced geometrically

by factors of≈
√

2, up to the largest batch size which fit into the
total GPU memory. We did the same for all valid combinations
of 4 to 16 nodes and 1 to 4 GPUs per node, where the same num-
ber of GPUs is allocated from each node. Finally, to simulate
the throughput for a job, we perform a multi-dimensional linear
interpolation between the nearest configurations we measured.
Simulating statistical efficiency. We measured the gradient
noise scale during training using a range of batch sizes, spaced
geometrically by factors of≈

√
2. To simulate the statistical

efficiency for a job using a certain batch size, we linearly
interpolated its value of the gradient noise scale between the
two nearest batch sizes we measured.
Simulator fidelity. The data we collected about each job en-
ables our simulator to reproduce several system effects, includ-
ing the performance impact of different GPU placements. We
also simulate the overhead of checkpoint-restarts by injecting
a 30-second delay for each job which has its resources re-
allocated. Unless stated otherwise, we do not simulate any net-
work interference between different jobs. Therefore, each dis-
tributed job runs at its full speed, ignoring other distributed jobs.
We study the effects of interference in more detail in Sec. 5.3.2.

Compared with our testbed experiments in Sec. 5.2, we
find that our simulator is able to reproduce similar factors of
improvement. Our simulated results show that Pollux reduces
the average JCT by 26% and 40% over Optimus+Oracle and
Tiresias+TunedJobs, respectively, compared with 25% and
50% in our testbed experiments.

5.3.1 Workloads with Realistic Jobs

In Sec. 5.2, we compared Pollux with state-of-the-art DL sched-
ulers in the scenario that every submitted job is already config-
ured with an ideal number of GPUs and batch size. Without as-
sistance from a system like Pollux, users likely need to try many
different configurations for each job, before finding one that
is reasonable. Each trial run by the user is yet another job con-
figured with a potentially poor choice of GPUs and batch size.

In this section, we compare Pollux with Optimus+Oracle
and Tiresias using realistic job configurations. For each job, we
use the number of GPUs as specified in the Microsoft traces,
which were decided by real users of a DL cluster. We then
select a random batch size which is within a factor of 2 from the
most efficient batch size for that number of GPUs, according
to our simulator data. We constructed several workload traces
using various mixtures of ideally-tuned jobs (Sec. 5.2), and
user-configured jobs from the Microsoft cluster trace.

Fig. 7 shows the results. First, the performance of Pollux
is unaffected by the inclusion of the user-configured jobs. This
is simply because both the number of GPUs and the batch size
are decided automatically by Pollux, and co-adapted during
training, rather than being set by users at job submission
time. On the other hand, the performance of Tiresias degrades
quickly as more user-configured jobs are included in the
workload. We find that many users requested a small number

10

0% 33% 67% 100%
Ratio of user-configured jobs

0

1

2

3

4

N
or

m
. a

ve
ra

ge
 JC

T

1.0 1.0 1.0 1.0
1.4

1.7 1.9 2.1
1.7

2.3
2.8

3.3Pollux
Optimus+Oracle
Tiresias

Figure 7: Average JCT (relative to Pollux) for workloads
with increasing ratios of realistic, user-configured jobs. 100%
corresponds to jobs exactly as configured in the Microsoft
trace. 0% corresponds to the trace used in Sec. 5.2.

0.5x 1.0x 1.5x 2.0x
Relative job load

0

1

2

3

4

5

Av
er

ag
e

JC
T

(h
ou

rs
)

Pollux
Optimus+Oracle
Tiresias+TunedJobs

Figure 8: Average JCT for various number of jobs submitted
within an 8-hour period.

of GPUs, when they could still have efficiently utilized more
GPUs—especially in the later stages of each job, when the
statistical efficiency of using larger batch sizes is high.

The performance of Optimus+Oracle also degraded, but
not by as much as Tiresias. We found that even though
Optimus+Oracle is able to allocate more GPUs to each job,
the fact that it does not also adapt the batch size means those
extra GPUs are under-utilized in terms of system throughput.
Overall, when all job configurations are derived from the
Microsoft cluster traces (corresponding to the 100% group
in Fig. 7), Pollux reduces the average JCT by 50% relative to
Optimus+Oracle, and by 70% relative to Tiresias.

5.3.2 Other Effects on Scheduling

Sensitivity to load. We compare the performace of Pollux
with Optimus+Oracle and Tiresias+TunedJobs for increasing
load, in terms of the rate of job submissions. Fig. 8 shows
the results. As expected, all three scheduling policies suffer
longer job completion times as the load is increased. However,
the advantage of Pollux is even more noticeable at higher
loads. At 2× the load, the average job completion time of
Pollux increased by 1.8×, while that of Optimus+Oracle and
Tiresias+TunedJobs increased by 2.0× and 2.6×, respectively.
Impact of job weights. We investigate the impact of job
weights (Eqn 16) by comparing different values for the decay
parameter λ. In particular, λ = 0 represents our baseline, ie.
when each job is given a weight of 1. Table 3 summarizes
the results. We find that increasing λ significantly improves

Decay (λ) Avg. JCT 50%tile JCT 99%tile JCT
0.0 1 1 1
0.5 0.95 0.77 1.05
1.0 0.98 0.68 1.20

Table 3: Job completion time for various degrees of job weight
decay λ. Results are shown relative to λ = 0, which always
assigns a weight of 1 to every job.

0% 25% 50%
Interference slowdown

0.0

0.5

1.0

1.5

N
or

m
. a

ve
ra

ge
 JC

T

1.00 1.00 1.000.98
1.14

1.40

Avoidance enabled Avoidance disabled

Figure 9: Average JCT for various degrees of artificial network
contention, interference avoidance enabled vs. disabled.

the 50th percentile JCT, while moderately degrading the
99th percentile JCT. These results show that job weighting
effectively prioritizes smaller jobs to finish quickly ahead of
larger jobs. On the other hand, we find only a small impact
on the average JCT, which improves by 5% at λ=0.5.
Impact of interference avoidance. PolluxSched attempts to
avoid interference between DL jobs by disallowing cluster
allocations which include two distributed jobs that share the
same node. Although this strategy guarantees that network
resources on each node are reserved for at most one job, it also
constrains the set of feasible cluster allocations. The genetic
algorithm may have a more difficult time finding an efficient
cluster allocation. On the other hand, Xiao et al. [46] report
up to 50% slowdown for DL jobs which compete with each
other for network resources.

To evaluate the impact of PolluxSched’s interference
avoidance constraint, we artificially inject various degrees of
slowdown for distributed jobs sharing the same node. Fig. 9
shows the results. With interference avoidance enabled, job
completion time is unaffected by more severe slowdowns,
because network contention is completely mitigated. However,
without interference avoidance, job completion times increase
significantly, up to 1.4×when interference slowdown is 50%.

On the other hand, in the ideal scenario when there is zero
slowdown due to interference, PolluxSched with avoidance
disabled only performs 2% better. This result indicates that
PolluxSched is still able to find efficient cluster allocations
while obeying the interference avoidance constraint.

5.3.3 Cloud Auto-scaling

In cloud environments, computing resources can be obtained
and released as required, and users pay for the duration they
hold onto those resources. In this scenario, it is less likely that

11

0 5000 10000 15000
Time (s)

0

4

8

12

16

20

N
od

es

Autoscaler
Pollux
Or et al.

(a) Number of nodes over time.

5000 10000 15000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

St
at

. e
ff

ic
ie

nc
y

Autoscaler
Pollux
Or et al.

(b) Statistical efficiency over time.

Figure 10: Goodput-based auto-scaling (Pollux) vs throughput-
based auto-scaling (Or et al.) for ImageNet training.

a DL training job is competing with other jobs for resources,
but rather with the cost of renting resources. Thus, although
Pollux is capable of auto-scaling a cluster in the cloud which
runs many concurrent jobs (Sec. 4.2.2), we focus this section
on training a single large model in the cloud.
Auto-scaling ImageNet training. Since the statistical
efficiency of DL training typically increases over time, larger
batch sizes can be utilized more effectively later on in training.
Pollux measures the statistical efficiency during training, and
is able to provision more resources to accelerate large-batch
training when it is the most impactful, and fewer resources
to save cost while statistical efficiency is low.

We compare Pollux with the cloud auto-scaling strategy
proposed by Or et al. [35], which allows the batch size to be
increased during training, but models job performance using
the system throughput rather than the goodput.

Fig. 10 shows the results. Since the system throughput is
a measure which does not change according to the training
progress, throughput-based autoscaling (Or et al.) quickly
scales out to more nodes and a larger batch size (Fig. 10a),
which remains constant thereafter. On the other hand, Pollux
knows that the statistical efficiency near the beginning of the
job is low for large batch sizes, and gradually increases the
number of nodes as the effectiveness of larger batch sizes
improves over time. Fig. 10b shows that Pollux maintains a
high statistical efficiency throughout training.

Overall, we found that Pollux can train ImageNet for 25%
cheaper cost, with only a 6% longer completion time than
auto-scaling policies based on throughput only.

6 Related Work

Resource scheduling for DL. Several recent work have
explored specialized scheduling strategies for DL training.
Gandiva [46] profiles the performance of DL training jobs
during runtime, in order to dynamically migrate jobs for better
resource placement. Tiresias [16] exploits the characteristics
of large-scale DL workload traces to improve scheduling per-
formance while requiring little information about the run-time
predictability of each individual job. Compared with Pollux,

Gandiva and Tiresias are agnostic to the resource-scalability
of each job, and do not prioritize more resources for jobs that
can utilize them more effectively.

Elasticity for ML and DL training [17, 22, 33, 39] has been
leveraged for improving scheduling performance in shared
clusters. SLAQ [49] aims to improve the average quality of
all jobs in the cluster, by re-directing more resources towards
jobs whose quality is improving the fastest. Optimus [38]
optimizes for the average job completion time, by re-directing
more resources towards jobs that are expected to improve the
average JCT the most. Unlike Pollux, SLAQ and Optimus
only adapt resource allocations, without also adapting batch
sizes and learning rates for each job.
Adaptive batch size training. Recent work on DL training
algorithms have explored dynamically adapting batch sizes
for better efficiency and parallelization. AdaBatch [10]
increases the batch size at pre-determined iterations during
training, while linearly scaling the learning rate. Smith et
al. [44] suggest that instead of decaying the learning rate
during training, the batch size should be increased instead.
CABS [4] adaptively tunes the batch size and learning rate
during training using similar gradient statistics as Pollux.

These works have a common assumption that extra com-
puting resources are available to parallelize larger batch sizes
whenever desired, which is rarely true inside shared-resource
environments. Pollux complements existing adaptive batch
size strategies by adapting the batch size and learning rate in
conjunction with the amount of resources currently available.
Hyper-parameter tuning. A large body of work focuses on
tuning the hyper-parameters for machine learning and deep
learning models [5, 12, 23, 26, 34], which typically involves
managing shared resources between many training jobs [1,14].
Although batch size and learning rate are within the space of
hyper-parameters optimized by these systems, Pollux’s goal
is fundamentally different. Whereas hyper-parameter tuning
systems search for the highest model quality, Pollux adapts
the batch size and learning rate for the most efficient execution
for each job, while not degrading model quality. Pollux may
complement hyper-parameter tuning systems by efficiently
scheduling the many training jobs spawned to run each trial.

7 Conclusion

Pollux is a DL cluster scheduler that co-adaptively allocates
resources, while at the same time tuning each training job
to best utilize those resources. We present a formulation of
goodput that combines system throughput and statistical
efficiency for distributed DL training. Based on the principle
of goodput maximization, Pollux automatically and jointly
tunes the resource allocations, batch sizes, and learning rates
for DL jobs, which can be particularly difficult for users to
configure manually. Pollux outperforms state-of-the-art DL
schedulers even if users can configure their jobs well, and
reduces the cost of training large models in the cloud.

12

References

[1] Introduction to katib | kubeflow. https:
//www.kubeflow.org/docs/components/
hyperparameter-tuning/overview/. Accessed:
2020-05-18.

[2] Production-grade container orchestration - kubernetes.
https://kubernetes.io/. Accessed: 2020-05-18.

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang
Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike
Chrzanowski, Adam Coates, Greg Diamos, Ke Ding,
Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,
Linxi Fan, Christopher Fougner, Liang Gao, Caixia
Gong, Awni Hannun, Tony Han, Lappi Vaino Johannes,
Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby
Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li,
Dongpeng Ma, Sharan Narang, Andrew Ng, Sherjil Ozair,
Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan,
Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, Kavya Srinet, Anuroop
Sriram, Haiyuan Tang, Liliang Tang, Chong Wang,
Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang,
Zhiqian Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen
Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan,
and Zhenyao Zhu. Deep speech 2: End-to-end speech
recognition in english and mandarin. In Proceedings
of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16,
page 173–182. JMLR.org, 2016.

[4] Lukas Balles, Javier Romero, and Philipp Hennig.
Coupling adaptive batch sizes with learning rates. CoRR,
abs/1612.05086, 2016.

[5] James S Bergstra, Rémi Bardenet, Yoshua Bengio,
and Balázs Kégl. Algorithms for hyper-parameter
optimization. In Advances in neural information
processing systems, pages 2546–2554, 2011.

[6] J. Blank and K. Deb. pymoo: Multi-objective
optimization in python. IEEE Access, pages 1–1, 2020.

[7] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed
systems. CoRR, abs/1512.01274, 2015.

[8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc'aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and
Andrew Y. Ng. Large scale distributed deep networks.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1223–1231. Curran
Associates, Inc., 2012.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vi-
sion and pattern recognition, pages 248–255. Ieee, 2009.

[10] Aditya Devarakonda, Maxim Naumov, and Michael
Garland. Adabatch: Adaptive batch sizes for training
deep neural networks. CoRR, abs/1712.02029, 2017.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes (voc)
challenge. International Journal of Computer Vision,
88(2):303–338, June 2010.

[12] Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter.
Efficient and robust automated machine learning. In
Advances in neural information processing systems,
pages 2962–2970, 2015.

[13] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir
Feinberg, Amir Gholami, Kai Rothauge, Michael W.
Mahoney, and Joseph Gonzalez. On the computational
inefficiency of large batch sizes for stochastic gradient
descent. CoRR, abs/1811.12941, 2018.

[14] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and D. Sculley. Google
vizier: A service for black-box optimization. In
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’17, page 1487–1495, New York, NY, USA, 2017.
Association for Computing Machinery.

[15] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter
Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017.

[16] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and
Chuanxiong Guo. Tiresias: A GPU cluster manager for
distributed deep learning. In 16th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 19), pages 485–500, Boston, MA, February 2019.
USENIX Association.

[17] Aaron Harlap, Alexey Tumanov, Andrew Chung,
Gregory R. Ganger, and Phillip B. Gibbons. Proteus:
Agile ml elasticity through tiered reliability in dynamic
resource markets. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems, EuroSys ’17,

13

https://www.kubeflow.org/docs/components/hyperparameter-tuning/overview/
https://www.kubeflow.org/docs/components/hyperparameter-tuning/overview/
https://www.kubeflow.org/docs/components/hyperparameter-tuning/overview/
https://kubernetes.io/

page 589–604, New York, NY, USA, 2017. Association
for Computing Machinery.

[18] F. Maxwell Harper and Joseph A. Konstan. The
movielens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4), December 2015.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[20] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. Neural collaborative filter-
ing. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, page 173–182, Republic
and Canton of Geneva, CHE, 2017. International World
Wide Web Conferences Steering Committee.

[21] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee,
Jin Kyu Kim, Phillip B. Gibbons, Garth A Gibson, Greg
Ganger, and Eric P Xing. More effective distributed ml
via a stale synchronous parallel parameter server. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 1223–1231.
Curran Associates, Inc., 2013.

[22] Botong Huang, Matthias Boehm, Yuanyuan Tian,
Berthold Reinwald, Shirish Tatikonda, and Frederick R.
Reiss. Resource elasticity for large-scale machine
learning. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, page 137–152, New York, NY, USA,
2015. Association for Computing Machinery.

[23] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
Sequential model-based optimization for general
algorithm configuration. In International conference on
learning and intelligent optimization, pages 507–523.
Springer, 2011.

[24] Myeongjae Jeon, Shivaram Venkataraman, Amar
Phanishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 947–960,
Renton, WA, July 2019. USENIX Association.

[25] Tyler B. Johnson, Pulkit Agrawal, Haijie Gu, and Carlos
Guestrin. Adascale {sgd}: A scale-invariant algorithm
for distributed training, 2020.

[26] Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie
Neiswanger, Biswajit Paria, Christopher R Collins, Jeff
Schneider, Barnabas Poczos, and Eric P Xing. Tuning
hyperparameters without grad students: Scalable and

robust bayesian optimisation with dragonfly. arXiv
preprint arXiv:1903.06694, 2019.

[27] J. Kiefer. Sequential minimax search for a maximum.
Proceedings of the American Mathematical Society,
4(3):502–506, 1953.

[28] John Kominek and Alan Black. The cmu arctic speech
databases. SSW5-2004, 01 2004.

[29] Alex Krizhevsky. Learning multiple layers of features
from tiny images. University of Toronto, 05 2012.

[30] Alex Krizhevsky. One weird trick for parallelizing con-
volutional neural networks. CoRR, abs/1404.5997, 2014.

[31] Sam McCandlish, Jared Kaplan, Dario Amodei, and
OpenAI Dota Team. An empirical model of large-batch
training. CoRR, abs/1812.06162, 2018.

[32] Brad L. Miller, Brad L. Miller, David E. Goldberg, and
David E. Goldberg. Genetic algorithms, tournament
selection, and the effects of noise. Complex Systems,
9:193–212, 1995.

[33] Shravan Narayanamurthy, Markus Weimer, Dhruv
Mahajan, Tyson Condie, Sundararajan Sellamanickam,
and S. Sathiya Keerthi. Towards resource-elastic
machine learning, 2013.

[34] Willie Neiswanger, Kirthevasan Kandasamy, Barnabas
Poczos, Jeff Schneider, and Eric Xing. Probo: a frame-
work for using probabilistic programming in bayesian
optimization. arXiv preprint arXiv:1901.11515, 2019.

[35] Andrew Or, Haoyu Zhang, and Michael Freedman.
Resource elasticity in distributed deep learning. In
Proceedings of Machine Learning and Systems 2020,
pages 400–411. 2020.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems 32, pages 8026–8037. Curran Associates, Inc., 2019.

[37] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu
Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large
mini-batch object detector. CoRR, abs/1711.07240, 2017.

[38] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: An efficient dynamic

14

resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, New York, NY, USA, 2018. Association
for Computing Machinery.

[39] Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang
Chen, Qirong Ho, Garth A. Gibson, and Eric P. Xing.
Litz: Elastic framework for high-performance distributed
machine learning. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 631–644, Boston,
MA, July 2018. USENIX Association.

[40] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. CoRR, abs/1804.02767, 2018.

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning Internal Representations by Error Propagation,
page 318–362. MIT Press, Cambridge, MA, USA, 1986.

[42] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

[43] Christopher J. Shallue, Jaehoon Lee, Joseph M.
Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism
on neural network training. CoRR, abs/1811.03600,
2018.

[44] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. Don’t decay the learning rate, increase the batch size.
CoRR, abs/1711.00489, 2017.

[45] WenWu Wang and Ping Yu. Asymptotically optimal
differenced estimators of error variance in nonparametric
regression. Computational Statistics & Data Analysis,
105:125 – 143, 2017.

[46] Wencong Xiao, Romil Bhardwaj, Ramachandran
Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua
Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. Gandiva: Intro-
spective cluster scheduling for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 595–610, Carlsbad,
CA, October 2018. USENIX Association.

[47] Yang You, Jonathan Hseu, Chris Ying, James Demmel,
Kurt Keutzer, and Cho-Jui Hsieh. Large-batch training
for LSTM and beyond. CoRR, abs/1901.08256, 2019.

[48] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P. Xing. Poseidon: An efficient communi-
cation architecture for distributed deep learning on GPU
clusters. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 181–193, Santa Clara, CA,
July 2017. USENIX Association.

[49] Haoyu Zhang, Logan Stafman, Andrew Or, and
Michael J. Freedman. Slaq: Quality-driven scheduling
for distributed machine learning. In Proceedings of the
2017 Symposium on Cloud Computing, SoCC ’17, page
390–404, New York, NY, USA, 2017. Association for
Computing Machinery.

[50] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge
Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines
for large-scale bound-constrained optimization. ACM
Trans. Math. Softw., 23(4):550–560, December 1997.

15

A Relation between Adascale [25] and Gradi-
ent Noise Scale [31]

In Sec. 3, we’ve defined the statistical efficiency of a DL job
running with batch size m>m0 to be the amount of training
progress made per unit of training data processed using m
relative to using m0. Previous work has aimed to analyze this
quantity. Specifically, [31] formulates the amount of training
progress that can be made in a single update using a batch of
size m relative to the amount of progress made with a batch
of size m0. Similarly, Adascale’s [25] rt (Sec. 2.2) can be
framed as the relative training progress made using batch
size m versus m0. We can express the statistical efficiency of
both works in terms of the gradient noise scale ϕt (Sec. 2.2).
Here, we show an equivalence between the formulations of
efficiency given by both papers

In [31], the gradient noise scale is shown to be the largest
value of the batch size m at which the optimal learning rate is
under 50% of the optimal learning rate for the full (non-batch)
gradient. Scaling the batch size m to below ϕt can allow for
linear scaling of the learning rate, while scaling m to above
ϕt does not allow for proportional scaling of the learning rate
and thus yields diminishing returns.

Given the gradient g(t) and Hessian H(t) for the model
parameters at a given iteration t, [31] approximates the optimal
(non-batch) learning rate as

ηmax=
|g(t)|2

g(t)T H(t)g(t)
=

µ2
t

g(t)T H(t)g(t)
.

Given a gradient estimate ĝ(t) formed using a batch of size
m0, [31] shows that the optimal learning rate ηopt≤ηmax can
be written

ηopt(m)=
ηmax

1+ϕt/m
,

where ϕt is defined to be

ϕt =
tr
(

H(t)Σ(t)
)

g(t)T H(t)g(t)
.

and where the single-example covariance matrix Σ(t) is defined
to be

Σ
(t)=covx∈X

(
∇`(w(t),x)

)
.

The gradient noise scale is difficult to compute in practice, so
[31] describes a simplification. If we assume that H(t)=cI for
some constant c, then we can write the gradient noise scale as

ϕt =
tr
(

Σ(t)
)

|g(t)|2
=

m0σ2
t

µ2
t

,

where σ2
t = Var[ĝ(t)] is the variance and µ2

t = |E[ĝ(t)]|2 the
squared norm of the gradient at iteration t using batch size m0.

Under these assumptions we can also write the optimal
learning rate for a batch of size m as

ηopt(m)=
ηmax

1+ϕt/m
=

kµ2
t

µ2
t +

m0
m σ2

t

for some k. The relative training progress, written as the ratio
of optimal learning rates at batch size m versus m0 is then

ηopt(m)

ηopt(m0)
=

µ2
t +σ2

t

µ2
t +

m0
m σ2

t
=

1+ϕt/m0

1+ϕ/m
,

and the statistical efficiency can therefore be written

EFFICIENCYt(m)=
ηopt(m)

ηopt(m0)

m0

m
=

ϕt+m0

ϕ+m
.

Alternatively, in Adascale, [25] rt (Sec. 2.2) can be framed
as the relative training progress made using batch size m
versus m0. Adascale writes rt as

rt =
σ2

t +µ2
t

m0
m σ2

t +µ2
t

(18)

where σ2
t and µ2

t are again the variance and squared norm of the
gradient at iteration t using batch size m0. Since ϕ=m0σ2

t /µ2
t ,

we can rewrite rt as

rt =
ϕt/m0+1
ϕt/m+1

, (19)

and can thus write the efficiency as

EFFICIENCYt(m)=rt
m0

m
=

ϕt+m0

ϕ+m
.

16

	1 Introduction
	2 Background: Distributed DL Training
	2.1 System Throughput
	2.2 Statistical Efficiency
	2.3 Existing DL Schedulers

	3 The Goodput of DL Training
	3.1 Modeling Statistical Efficiency
	3.2 Modeling System Throughput

	4 Pollux Design and Architecture
	4.1 PolluxAgent: Job-level Optimization
	4.2 PolluxSched: Cluster-wide Optimization
	4.2.1 Genetic Algorithm
	4.2.2 Cloud Auto-scaling

	4.3 Implementation

	5 Evaluation
	5.1 Methodology
	5.2 Testbed Experiments
	5.2.1 Results

	5.3 Simulator Experiments
	5.3.1 Workloads with Realistic Jobs
	5.3.2 Other Effects on Scheduling
	5.3.3 Cloud Auto-scaling

	6 Related Work
	7 Conclusion
	A Relation between Adascale johnson2020adascale and Gradient Noise Scale DBLP:journals/corr/abs-1812-06162

