
SMART CONTRACT AUDITS

Smart Contract
Security Assessment

09-3-2022

Prepared for

0vix

Online Report

0vix-lending-protocol

https://omniscia.io/reports/0vix-lending-protocol/

We were tasked with performing an audit on the 0vix decentralized lending and borrowing

protocol based on the Compound implementation.

The codebase has undergone several adjustments from the original Compound

implementation to accommodate for the additional features the 0vix team desired. Namely,

the pragma versions have been upgraded no longer necessitating the use of SafeMath with

several statements have been wrapped in unchecked code blocks and the borrow and

supply tracking mechanisms of the OToken (ex- CToken) implementations have been

upgraded to support second-level tracking via interactions with the BoostManager contract.

Over the course of the audit, we identified a significant flaw in the BoostManager contract

that causes boosted balances to be miscalculated.

Furthermore, we pinpointed several discrepancies in the VoteController contract in

comparison to the Vyper implementation by Curve Finance. We requested supplemental

information from the 0vix team to identify what the delta is of the VoteController in relation

to the original Curve.fi implementation.

In cojunction with the material provided to us by 0vix and our own analysis of the codebase,

we deduced that the contract cannot be audited as or considered a "fork" as it has been re-

written to adapt to a completely different system (Compound vs Curve.fi) with multiple

original notions being removed and replaced by new ones that are 0vix or Compound related.

To this end, the VoteController contract cannot be considered as audited in full as we only

evaluated the difference between the original implementation and the new one and we

strongly advise the 0vix team to procure a dedicated audit for the VoteController as we

cannot vouch for its safety.

Lending Protocol Security Audit

Audit Overview

VoteController.sol Scope

https://omniscia.io/reports/0vix-lending-protocol/

The 0vix team provided a PR (Pull Request) in the original GitHub repository in scope of the

audit that contained commits meant to address the exhibits outlined in the report.

We advise them to re-visit certain exhibits that have been marked as not-addressed or

partially addressed to ensure the outputs of the audit have been correctly assimilated in the

codebase as desired.

Files in Scope Repository Commit(s)

,

,

,

,

,

,

,

,

,

,

,

Post-Audit Conclusion

Contracts Assessed

BoostManager.sol (BMR) 0vix-protocol 016c904860
fd6151c0d2

CarefulMath.sol (CMH) 0vix-protocol 016c904860
fd6151c0d2

Comptroller.sol (COM) 0vix-protocol 016c904860
fd6151c0d2

ComptrollerStorage.sol (CSE) 0vix-protocol 016c904860
fd6151c0d2

Exponential.sol (EXP) 0vix-protocol 016c904860
fd6151c0d2

ErrorReporter.sol (ERR) 0vix-protocol 016c904860
fd6151c0d2

ExponentialNoError.sol (ENE) 0vix-protocol 016c904860
fd6151c0d2

JumpRateModel.sol (JRM) 0vix-protocol 016c904860
fd6151c0d2

Maximillion.sol (MAX) 0vix-protocol 016c904860
fd6151c0d2

Ovix.sol (OVI) 0vix-protocol 016c904860
fd6151c0d2

OErc20.sol (OE0) 0vix-protocol 016c904860
fd6151c0d2

https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/vote-escrow/BoostManager.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/vote-escrow/BoostManager.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/CarefulMath.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/libraries/CarefulMath.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/CarefulMath.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/Comptroller.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/Comptroller.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/ComptrollerStorage.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/ComptrollerStorage.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/ComptrollerStorage.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/Exponential.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/libraries/Exponential.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/Exponential.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/ErrorReporter.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/libraries/ErrorReporter.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/ErrorReporter.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/ExponentialNoError.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/libraries/ExponentialNoError.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/ExponentialNoError.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/interest-rate-models/JumpRateModel.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/interest-rate-models/JumpRateModel.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/Maximillion.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Maximillion.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/Maximillion.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/governance/Ovix.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/governance/Ovix.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/governance/Ovix.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/OErc20.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/otokens/OErc20.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/OErc20.sol
https://omniscia.io/reports/0vix-lending-protocol/

Files in Scope Repository Commit(s)

,

,

,

,

,

,

,

,

,

,

,

,

Severity Identified Alleviated Partially Alleviated Acknowledged

1 0 0 1

36 29 2 5

OMatic.sol (OMC) 0vix-protocol 016c904860
fd6151c0d2

OToken.sol (OTN) 0vix-protocol 016c904860
fd6151c0d2

OErc20Storage.sol (OES) 0vix-protocol 016c904860
fd6151c0d2

OTokenStorage.sol (OTS) 0vix-protocol 016c904860
fd6151c0d2

OvixChainlinkOracle.sol (OCO) 0vix-protocol 016c904860
fd6151c0d2

OvixChainlinkOracleV2.sol (OCV) 0vix-protocol 016c904860
fd6151c0d2

PriceOracle.sol (POE) 0vix-protocol 016c904860
fd6151c0d2

SafeMath.sol (SMH) 0vix-protocol 016c904860
fd6151c0d2

TransparentProxy.sol (TPY) 0vix-protocol 016c904860
fd6151c0d2

Unitroller.sol (UNI) 0vix-protocol 016c904860
fd6151c0d2

UnitrollerAdminStorage.sol (UAS) 0vix-protocol 016c904860
fd6151c0d2

VoteController.sol (VCR) 0vix-protocol 016c904860
fd6151c0d2

Audit Synopsis

https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/OMatic.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/otokens/OMatic.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/OMatic.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/abstract/OToken.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/otokens/abstract/OToken.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/abstract/OToken.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/abstract/OErc20Storage.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/otokens/abstract/OErc20Storage.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/abstract/OErc20Storage.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/abstract/OTokenStorage.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/otokens/abstract/OTokenStorage.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/otokens/abstract/OTokenStorage.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/chainlink/OvixChainlinkOracle.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/chainlink/OvixChainlinkOracle.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/chainlink/OvixChainlinkOracleV2.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/chainlink/OvixChainlinkOracleV2.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/PriceOracle.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/PriceOracle.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/PriceOracle.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/SafeMath.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/libraries/SafeMath.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/libraries/SafeMath.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/proxy/TransparentProxy.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/proxy/TransparentProxy.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/proxy/TransparentProxy.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/Unitroller.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Unitroller.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/Unitroller.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/UnitrollerAdminStorage.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/UnitrollerAdminStorage.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/UnitrollerAdminStorage.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/vote-escrow/VoteController.sol
https://github.com/0Vix/0vix-protocol
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol
https://github.com/0Vix/0vix-protocol/blob/fd6151c0d2eefdabcb0f4cd21c2904a0c01c04eb/contracts/vote-escrow/VoteController.sol
https://omniscia.io/reports/0vix-lending-protocol/

Severity Identified Alleviated Partially Alleviated Acknowledged

12 7 0 5

12 3 2 7

0 0 0 0

During the audit, we filtered and validated a total of 8 findings utilizing static analysis tools

as well as identified a total of 53 findings during the manual review of the codebase. We

strongly recommend that any minor severity or higher findings are dealt with promptly prior

to the project's launch as they introduce potential misbehaviours of the system as well as

exploits.

https://omniscia.io/reports/0vix-lending-protocol/

Compilation

The project utilizes hardhat as its development pipeline tool, containing an array of tests

and scripts coded in TypeScript.

To compile the project, the compile command needs to be issued via the npx CLI tool to

hardhat :

The hardhat tool automatically selects Solidity version 0.8.4 based on the version

specified within the hardhat.config.ts file.

The project contains discrepancies with regards to the Solidity version used, however, they

are solely contained in dependencies and can thus be ignored.

The 0vix team has locked the pragma statements to 0.8.4 (=0.8.4), the same version

utilized for our static analysis as well as optimizational review of the codebase.

During compilation with the hardhat pipeline, no errors were identified that relate to the

syntax or bytecode size of the contracts.

npx hardhat compile

BASH

https://omniscia.io/reports/0vix-lending-protocol/

Static Analysis

The execution of our static analysis toolkit identified 648 potential issues within the

codebase of which 639 were ruled out to be false positives or negligible findings.

The remaining 9 issues were validated and grouped and formalized into the 8 exhibits that

follow:

ID Severity Addressed Title

BMR-01S Inexistent Sanitization of Input
Addresses

COM-01S Inexistent Event Emissions

COM-02S Literal Equality of bool Variable

COM-03S Inexistent Sanitization of Input
Addresses

MAX-01S Deprecated Native Asset Transfer

OCV-01S Inexistent Event Emissions

VCR-01S Redundant Constructor
Implementation

VCR-02S Redundant Variable Assignments

https://omniscia.io/reports/0vix-lending-protocol/static-analysis/BoostManager-BMR#BMR-01S
https://omniscia.io/reports/0vix-lending-protocol/static-analysis/Comptroller-COM#COM-01S
https://omniscia.io/reports/0vix-lending-protocol/static-analysis/Comptroller-COM#COM-02S
https://omniscia.io/reports/0vix-lending-protocol/static-analysis/Comptroller-COM#COM-03S
https://omniscia.io/reports/0vix-lending-protocol/static-analysis/Maximillion-MAX#MAX-01S
https://omniscia.io/reports/0vix-lending-protocol/static-analysis/OvixChainlinkOracleV2-OCV#OCV-01S
https://omniscia.io/reports/0vix-lending-protocol/static-analysis/VoteController-VCR#VCR-01S
https://omniscia.io/reports/0vix-lending-protocol/static-analysis/VoteController-VCR#VCR-02S
https://omniscia.io/reports/0vix-lending-protocol/

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential

malfunctions and vulnerabilities in the lending and borrowing protocol of 0vix.

As the project at hand implements a decentralized lending and borrowing protocol, intricate

care was put into ensuring that the flow of funds within the system conforms to the

specifications and restrictions laid forth within the protocol's specification.

We validated that all state transitions of the system occur within sane criteria and that all

rudimentary formulas within the system execute as expected. We pinpointed a significant

flaw within the system's balance boosting mechanism which could have had severe

ramifications to its overall operation, however, it was conveyed ahead of time to the 0vix

team to be promptly remediated.

Additionally, the system was investigated for any other commonly present attack vectors

such as re-entrancy attacks, mathematical truncations, logical flaws and ERC / EIP standard

inconsistencies. The documentation of the project was satisfactory to a certain extent,

however, we strongly recommend the documentation of the project to be expanded at

certain complex points such as the exact way the VotingController contract is meant to

implement its slope functions akin to Curve's implementation.

A total of 53 findings were identified over the course of the manual review of which 22

findings concerned the behaviour and security of the system. The non-security related

findings, such as optimizations, are included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

BMR-01M Incorrect Multiplier Utilization

BMR-02M Improper Prohibition of Base Initialization

BMR-03M Inexplicable Capability of Re-Invocation

BMR-04M Flash-Loan Prone Balance Measurements

COM-01M Inexistent Retroactive Reward System

ID Severity Addressed Title

COM-02M Inexistent Sanitization of Market Addition

COM-03M Overly Centralized Reward Control

OE0-01M Improper Invocation of EIP-20 transfer

OVI-01M Insecure Elliptic Curve Recovery
Mechanism

OVI-02M Race-Prone Nonce System

OCO-01M Potentially Restrictive Token Support

OCO-02M Authorative Control of Asset Prices

OCO-03M Permittance of Feed Overriding

OCV-01M Improper Staleness Limit

OCV-02M Potentially Restrictive Token Support

OCV-03M Authorative Control of Asset Prices

OCV-04M Misconstrued Data Staleness System

OCV-05M Permittance of Feed Overriding

UNI-01M Inexplicable Introduction of Pending
Administrator Bypass

VCR-01M Potentially Overly Centralized Protocol
Functionality

VCR-02M Truncation of Reward Speed Achieved

VCR-03M Improper Market Removal Methodology

BoostManager Static Analysis Findings

Type Severity Location

Input Sanitization

The linked function(s) accept address arguments yet do not properly sanitize them.

contracts/vote-escrow/BoostManager.sol

We advise some basic sanitization to be put in place by ensuring that each address

specified is non-zero.

The 0vix team added the recommended address sanitizations.

BMR-01S: Inexistent Sanitization of Input Addresses

BoostManager.sol:L38-L40

Description:

Example:

function initialize(

 IERC20 ve,

 IComptroller _comptroller,

 address _owner

) external {

SOL

37

38

39

40

41

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#input-sanitization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L38-L40
https://omniscia.io/reports/0vix-lending-protocol/

Comptroller Static Analysis Findings

Type Severity Location

Language Specific ,

The linked functions adjust sensitive contract variables yet do not emit an event for it.

contracts/Comptroller.sol

We advise an event to be declared and correspondingly emitted for each function to ensure

off-chain processes can properly react to this system adjustment.

The 0vix team implemented the recommended event s.

COM-01S: Inexistent Event Emissions

Comptroller.sol:L1891-L1893
L1898-L1900

Description:

Example:

function setVixAddress(address newVixAddress) public onlyAdmin {

 vixAddress = newVixAddress;

}

SOL

1891

1892

1893

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#language-specific
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L1891-L1893
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L1898-L1900
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization

The linked bool comparison is performed between a variable and a bool literal.

contracts/Comptroller.sol

We advise the bool variable to be utilized directly either in its negated (!) or original form.

The 0vix team changed the linked statement to directly utilize the bool variable.

COM-02S: Literal Equality of bool Variable

Comptroller.sol:L1872

Description:

Example:

guardianPaused[address(oToken)].borrow == true &&

SOL

1872

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L1872
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Input Sanitization ,

The linked function(s) accept address arguments yet do not properly sanitize them.

contracts/Comptroller.sol

We advise some basic sanitization to be put in place by ensuring that each address

specified is non-zero.

The 0vix team added the recommended address sanitizations.

COM-03S: Inexistent Sanitization of Input Addresses

Comptroller.sol:L1891 L1898

Description:

Example:

/**

 * @notice Set the 0VIX token address

 */

function setVixAddress(address newVixAddress) public onlyAdmin {

 vixAddress = newVixAddress;

}

SOL

1888

1889

1890

1891

1892

1893

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#input-sanitization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L1891
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L1898
https://omniscia.io/reports/0vix-lending-protocol/

Maximillion Static Analysis Findings

Type Severity Location

Language Specific

The linked statement performs a low-level native asset transfer via the transfer function

exposed by the address payable data type.

contracts/Maximillion.sol

As new EIPs such as EIP-2930 are introduced to the blockchain, gas costs can change and

the transfer instruction of Solidity specifies a fixed gas stipend that is prone to failure

should such changes be integrated to the blockchain the contract is deployed in. We advise

alternative ways of transferring assets to be utilized instead, such as OpenZeppelin's

Address.sol library and in particular the sendValue method exposed by it.

The 0vix team applied the recommended fix.

MAX-01S: Deprecated Native Asset Transfer

Maximillion.sol:L43

Description:

Example:

payable(msg.sender).transfer(received - borrows);

SOL

43

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#language-specific
https://eips.ethereum.org/EIPS/eip-2930
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Maximillion.sol#L43
https://omniscia.io/reports/0vix-lending-protocol/

OvixChainlinkOracleV2 Static Analysis Findings

Type Severity Location

Language Specific ,

The linked functions adjust sensitive contract variables yet do not emit an event for it.

contracts/chainlink/OvixChainlinkOracleV2.sol

We advise an event to be declared and correspondingly emitted for each function to ensure

off-chain processes can properly react to this system adjustment.

The 0vix team implemented the recommended event s.

OCV-01S: Inexistent Event Emissions

OvixChainlinkOracleV2.sol:L143-L145
L154-L156

Description:

Example:

function setValidPeriod(uint256 period) external onlyAdmin {

 validPeriod = period;

}

SOL

143

144

145

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#language-specific
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L143-L145
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L154-L156
https://omniscia.io/reports/0vix-lending-protocol/

VoteController Static Analysis Findings

Type Severity Location

Language Specific

The linked constructor definition is entirely redundant as it executes no statements.

contracts/vote-escrow/VoteController.sol

We advise the implementation to be omitted from the codebase optimizing its deployment

cost.

The 0vix team applied the recommended fix.

VCR-01S: Redundant Constructor Implementation

VoteController.sol:L174

Description:

Example:

constructor() {}

SOL

174

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#language-specific
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L174
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization ,

The linked variables are assigned to redundantly to the default value of each relevant data

type (i.e. uint256 assigned to 0 , address assigned to address(0) etc.).

contracts/vote-escrow/VoteController.sol

We advise the assignments to be safely omitted optimizing the codebase.

The 0vix team applied the recommended fix.

VCR-02S: Redundant Variable Assignments

VoteController.sol:L48 L80

Description:

Example:

uint256 public totalEmissions = 0; // in wei

SOL

48

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L48
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L80
https://omniscia.io/reports/0vix-lending-protocol/

BoostManager Manual Review Findings

Type Severity Location

Mathematical Operations , ,

The MULTIPLIER of the protocol is defined as 10**18 (1e18) yet it is utilized as if it

represented 0.1 (0.1e18) as a multiplier of "2.5" is represented as 25 * MULTIPLIER

instead of 25 * MULTIPLIER / 10 , thereby causing all multiplier boosts to be incorrect.

contracts/vote-escrow/BoostManager.sol

BMR-01M: Incorrect Multiplier Utilization

BoostManager.sol:L240 L243-L245
L247

Description:

Example:

function calcBoostedBalance(

 address user,

 uint256 boosterBasis,

 uint256 balance

) internal view returns (uint256) {

 if (veBalances[user] == 0 || boosterBasis == 0) return balance;

 uint256 minVe = (boosterBasis * balance) / MULTIPLIER;

 uint256 booster;

 if (veBalances[user] >= minVe) {

 booster = 25 * MULTIPLIER; // = 2,5

 } else {

 booster =

 ((15 * MULTIPLIER * veBalances[user]) / minVe) +

 10 *

 MULTIPLIER; // 1.5 * veBalance / minVe + 1;

 }

 return ((balance * booster) / (10 * MULTIPLIER));

}

SOL

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#mathematical-operations
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L240
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L243-L245
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L247
https://omniscia.io/reports/0vix-lending-protocol/

We advise this trait of the system to be corrected to ensure proper boost balances are

tracked by the contract.

The 0vix team has considered this exhibit and assessed that the boost balances are correctly

calculated in the system. We advised the 0vix team to instead use different multiplicants for

the minVe and booster calculations as they are currently confusing (one using MULTIPLIER

and the other using 10 * MULTIPLIER), however, the 0vix team opted to retain the current

code in place.

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Logical Fault

The constructor of the contract accepts an input argument instead of setting the value of

init directly to true .

contracts/vote-escrow/BoostManager.sol

We advise the constructor to remove the input argument and set the value directly as

advised to prevent initializations of the logic implementation.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

BMR-02M: Improper Prohibition of Base Initialization

BoostManager.sol:L33-L35

Description:

Example:

constructor(bool _init) {

 init = _init;

}

SOL

33

34

35

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#logical-fault
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L33-L35
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Centralization Concern

The veOVIX implementation can be arbitrarily set by the owner multiple times.

contracts/vote-escrow/BoostManager.sol

We advise the capability of re-setting the value to be removed from the codebase and

allowing to only be set once to avoid the system being compromised by a future update.

The 0vix team added the recommended address sanitizations, removing the aforementioned

capability from the contract owner.

BMR-03M: Inexplicable Capability of Re-Invocation

BoostManager.sol:L303-L306

Description:

Example:

function setVeOVIX(IERC20 ve) external onlyOwner {

 veOVIX = ve;

 emit VeOVIXUpdated(veOVIX);

}

SOL

303

304

305

306

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#centralization-concern
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L303-L306
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Logical Fault ,

The two linked functions are prone to flash loan manipulation as they rely on spot evaluations

of borrowed and supplied assets to the protocol.

contracts/vote-escrow/BoostManager.sol

BMR-04M: Flash-Loan Prone Balance Measurements

BoostManager.sol:L250-L262 L264-L276

Description:

Example:

function boostedSupplyBalanceOf(address market, address user)

 public

 view

 returns (uint256)

{

 return (

 calcBoostedBalance(

 user,

 supplyBoosterBasis[market][user],

 IOToken(market).balanceOf(user)

)

);

}

function boostedBorrowBalanceOf(address market, address user)

 public

 view

 returns (uint256)

{

 return (

 calcBoostedBalance(

 user,

 borrowBoosterBasis[market][user],

 IOToken(market).borrowBalanceStored(user)

)

);

}

SOL

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#logical-fault
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L250-L262
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L264-L276
https://omniscia.io/reports/0vix-lending-protocol/

We advise these functions to not be relied on for any form of governance or reward

implementation as they will significantly compromise either system.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/

Comptroller Manual Review Findings

Type Severity Location

Logical Fault ,

The reward system of 0Vix is not retro-active in contrast to the Compound implementation.

contracts/Comptroller.sol

We advise the system to be made retroactive by updating the logic of an "initial" index as per

the Compound implementation.

The 0vix team has considered this exhibit but applied a improper fix, i.e. keeping the "initial"

index to zero (0) instead of using the default inital market index value of 10**36 (1e36).

COM-01M: Inexistent Retroactive Reward System

Comptroller.sol:L1585-L1587 L1636-L1638

Description:

Example:

if (borrowerIndex == 0 && borrowIndex >= 0) {

 borrowerIndex = borrowIndex;

}

SOL

1636

1637

1638

Recommendation:

Alleviation:

Type Severity Location

Input Sanitization

The linked statement pushes a new oToken to the allMarkets array without validating if it

already exists as the original implementation performs.

contracts/Comptroller.sol

We advise duplicates to be avoided by iterating through all markets and ensuring the newly

added one doesn't already exist.

The 0vix team applied the recommended fix, disallowing for duplicated values to the

allMarkets array.

COM-02M: Inexistent Sanitization of Market Addition

Comptroller.sol:L1265

Description:

Example:

allMarkets.push(oToken);

SOL

1265

Recommendation:

Alleviation:

Type Severity Location

Centralization Concern ,

The administrator of the system has newly introduced administrative functionalities that

permit them to adjust the boost-tracking contract as well as the reward token itself,

rendering the project highly centralized.

contracts/Comptroller.sol

We advise this trait of the system to be re-assessed as it currently acts as a significant

Single-Point-of-Failure (SPoF) for the system.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

COM-03M: Overly Centralized Reward Control

Comptroller.sol:L1891-L1893
L1898-L1900

Description:

Example:

/**

 * @notice Set the 0VIX token address

 */

function setVixAddress(address newVixAddress) public onlyAdmin {

 vixAddress = newVixAddress;

}

/**

 * @notice Set the booster manager address

 */

function setBoostManager(address newBoostManager) public onlyAdmin {

 boostManager = IBoostManager(newBoostManager);

}

SOL

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

Recommendation:

Alleviation:

OErc20 Manual Review Findings

Type Severity Location

Standard Conformity

The linked statement does not properly validate the returned bool of the EIP-20 standard

transfer function. As the standard dictates, callers must not assume that false is never

returned.

contracts/otokens/OErc20.sol

Since not all standardized tokens are EIP-20 compliant (such as Tether / USDT), we advise a

safe wrapper library to be utilized instead such as SafeERC20 by OpenZeppelin to

opportunistically validate the returned bool only if it exists.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

OE0-01M: Improper Invocation of EIP-20 transfer

OErc20.sol:L150

Description:

Example:

token.transfer(admin, balance);

SOL

150

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20#token
https://eips.ethereum.org/EIPS/eip-20
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/otokens/OErc20.sol#L150
https://omniscia.io/reports/0vix-lending-protocol/

Ovix Manual Review Findings

Type Severity Location

Language Specific ,

The ecrecover function is a low-level cryptographic function that should be utilized after

appropriate sanitizations have been enforced on its arguments, namely on the s and v

values. This is due to the inherent trait of the curve to be symmetrical on the x-axis and thus

permitting signatures to be replayed with the same x value (r) but a different y value (s).

contracts/governance/Ovix.sol

OVI-01M: Insecure Elliptic Curve Recovery Mechanism

Ovix.sol:L182 L286

Description:

Example:

function permit(

 address owner,

 address spender,

 uint rawAmount,

 uint deadline,

 uint8 v,

 bytes32 r,

 bytes32 s

) external {

 uint96 amount;

 if (rawAmount == type(uint).max) {

 amount = type(uint96).max;

 } else {

 amount = safe96(rawAmount, "O::permit: amount exceeds 96 bits");

 }

 bytes32 domainSeparator = keccak256(

 abi.encode(

 DOMAIN_TYPEHASH,

 keccak256(bytes(name)),

 getChainId(),

SOL

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

We advise them to be sanitized by ensuring that v is equal to either 27 or 28 (

v ∈ {27, 28}) and to ensure that s is existent in the lower half order of the elliptic curve (

0 < s < secp256k1n ÷ 2 + 1) by ensuring it is less than

0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A1 . A reference

implementation of those checks can be observed in the ECDSA library of OpenZeppelin and

the rationale behind those restrictions exists within Appendix F of the Yellow Paper.

The 0vix team applied the recommended fix, removing the possibility of signature

malleability.

 address(this)

)

);

 bytes32 structHash = keccak256(

 abi.encode(

 PERMIT_TYPEHASH,

 owner,

 spender,

 rawAmount,

 nonces[owner]++,

 deadline

)

);

 bytes32 digest = keccak256(

 abi.encodePacked("\x19\x01", domainSeparator, structHash)

);

 address signatory = ecrecover(digest, v, r, s);

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Recommendation:

Alleviation:

Type Severity Location

Language Specific ,

The nonce system of the default Compound implementation has been re-purposed for the

EIP-2612 permit function of the contract thereby using the same nonce for two different

purposes.

contracts/governance/Ovix.sol

We advise separate nonce systems to be used for either function as currently race

conditions can manifest whereby a vote delegation is not consumed until a permit operation

using the same nonce is detected and thereby prohibited by consuming the vote delegation

(and vice-versa).

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

OVI-02M: Race-Prone Nonce System

Ovix.sol:L175 L289

Description:

Example:

bytes32 structHash = keccak256(

 abi.encode(

 PERMIT_TYPEHASH,

 owner,

 spender,

 rawAmount,

 nonces[owner]++,

 deadline

)

);

SOL

169

170

171

172

173

174

175

176

177

178

Recommendation:

Alleviation:

OvixChainlinkOracle Manual Review Findings

Type Severity Location

Standard Conformity ,

The linked statement prohibits valid EIP-20 tokens with more than 18 decimals from ever

being supported by the system.

contracts/chainlink/OvixChainlinkOracle.sol

We advise a proper delta evaluation system to be introduced to the codebase that divides by

10 to the power of the decimal delta in case the decimals exceed 18 .

The 0vix team has opted to remove the linked contract from codebase altogether.

OCO-01M: Potentially Restrictive Token Support

OvixChainlinkOracle.sol:L44 L55

Description:

Example:

uint decimalDelta = uint(18).sub(uint(token.decimals()));

SOL

44

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#standard-conformity
https://eips.ethereum.org/EIPS/eip-20
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L44
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L55
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Centralization Concern ,

The linked functions permit the administrator of the system to arbitrarily set prices for assets

that are supported by it.

contracts/chainlink/OvixChainlinkOracle.sol

We advise this trait of the system to be re-evaluated and potentially prohibited as apart from

allowing the owner to manipulate prices permits stale prices from being set within the

protocol.

The 0vix team has opted to remove the linked contract from codebase altogether.

OCO-02M: Authorative Control of Asset Prices

OvixChainlinkOracle.sol:L64-L68
L70-L73

Description:

Example:

function setUnderlyingPrice(IOToken oToken, uint underlyingPriceMantissa) e

 address asset = address(OErc20(address(oToken)).underlying());

 emit PricePosted(asset, prices[asset], underlyingPriceMantissa, underly

 prices[asset] = underlyingPriceMantissa;

}

SOL

64

65

66

67

68

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#centralization-concern
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L64-L68
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L70-L73
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Centralization Concern

The setFeed function permits an already set feed to be replaced, thereby affecting all

pending transactions of the protocol.

contracts/chainlink/OvixChainlinkOracle.sol

We advise the function to disallow overwriting existing feed entries. Alternatively, we advise

any feed adjustment to be accompanied by a multi-hour cooldown after which the change is

applied to allow for proper community due diligence.

The 0vix team has opted to remove the linked contract from codebase altogether.

OCO-03M: Permittance of Feed Overriding

OvixChainlinkOracle.sol:L75-L79

Description:

Example:

function setFeed(string calldata symbol, address feed) external onlyAdmin {

 require(feed != address(0) && feed != address(this), "invalid feed addr

 emit FeedSet(feed, symbol);

 feeds[keccak256(abi.encodePacked(symbol))] = IAggregatorV2V3(feed);

}

SOL

75

76

77

78

79

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#centralization-concern
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L75-L79
https://omniscia.io/reports/0vix-lending-protocol/

OvixChainlinkOracleV2 Manual Review Findings

Type Severity Location

Input Sanitization

The linked require check ensures that the updatedAt variable specified can at most be 3

seconds in the future, however, this limit is inexcusably small as the blockchain that the

project will be deployed to is Polygon with a median processing time of 2.1 seconds which

when coupled with the time required to retrieve a particular price and submit it to the

blockchain would always exceed the 3 seconds specified.

contracts/chainlink/OvixChainlinkOracleV2.sol

OCV-01M: Improper Staleness Limit

OvixChainlinkOracleV2.sol:L108

Description:

Example:

if (block.timestamp > updatedAt) {

 // reject stale price

 // validPeriod can be set to 5 mins

 require(block.timestamp - updatedAt < validPeriod, "bad updatedAt");

} else {

 // reject future timestamp (< 3s is allowed)

 require(updatedAt - block.timestamp < 3, "bad updatedAt");

 updatedAt = block.timestamp;

}

SOL

102

103

104

105

106

107

108

109

110

We advise future price measurements to be either prohibited or have updatedAt set to

block.timestamp without any logical checks as the current checks are ineffectual.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

Recommendation:

Alleviation:

Type Severity Location

Standard Conformity ,

The linked statement prohibits valid EIP-20 tokens with more than 18 decimals from ever

being supported by the system.

contracts/chainlink/OvixChainlinkOracleV2.sol

We advise a proper delta evaluation system to be introduced to the codebase that divides by

10 to the power of the decimal delta in case the decimals exceed 18 .

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

OCV-02M: Potentially Restrictive Token Support

OvixChainlinkOracleV2.sol:L64 L79

Description:

Example:

uint decimalDelta = uint(18).sub(uint(token.decimals()));

SOL

64

Recommendation:

Alleviation:

Type Severity Location

Centralization Concern

The linked function permits the administrator of the system to arbitrarily set prices for assets

that are supported by it.

contracts/chainlink/OvixChainlinkOracleV2.sol

OCV-03M: Authorative Control of Asset Prices

OvixChainlinkOracleV2.sol:L96-L114

Description:

Example:

function setUnderlyingPrice(

 address oToken,

 uint underlyingPriceMantissa,

 uint256 updatedAt

) external onlyAdmin {

 require(underlyingPriceMantissa > 0, "bad price");

 if (block.timestamp > updatedAt) {

 // reject stale price

 // validPeriod can be set to 5 mins

 require(block.timestamp - updatedAt < validPeriod, "bad updatedAt")

 } else {

 // reject future timestamp (< 3s is allowed)

 require(updatedAt - block.timestamp < 3, "bad updatedAt");

 updatedAt = block.timestamp;

 }

 emit PricePosted(oToken, prices[oToken].price, underlyingPriceMantissa,

 prices[oToken] = PriceData(underlyingPriceMantissa, updatedAt);

}

SOL

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

We advise this trait of the system to be re-evaluated and potentially prohibited as apart from

allowing the owner to manipulate prices permits stale prices from being set within the

protocol.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

Recommendation:

Alleviation:

Type Severity Location

Logical Fault , ,

The data staleness system utilized by the contract relies entirely on input arguments rather

than evaluating data staleness on use.

contracts/chainlink/OvixChainlinkOracleV2.sol

We advise data staleness to be validated on use by ensuring that whenever prices is

utilized that its updatedAt argument is within a specified window from the current

block.timestamp and to otherwise fetch an updated price from the Chainlink oracle.

The 0vix team has considered this exhibit but applied a non-optimized fix, as it should check

the stored price against a valid period in the if clause instead.

OCV-04M: Misconstrued Data Staleness System

OvixChainlinkOracleV2.sol:L59 L105 L108

Description:

Example:

if (prices[address(oToken)].price != 0) {

 price = prices[address(oToken)].price;

} else {

 price = getChainlinkPrice(getFeed(address(oToken)));

}

SOL

58

59

60

61

62

Recommendation:

Alleviation:

Type Severity Location

Centralization Concern

The setFeed function permits an already set feed to be replaced, thereby affecting all

pending transactions of the protocol.

contracts/chainlink/OvixChainlinkOracleV2.sol

We advise the function to disallow overwriting existing feed entries. Alternatively, we advise

any feed adjustment to be accompanied by a multi-hour cooldown after which the change is

applied to allow for proper community due diligence.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

OCV-05M: Permittance of Feed Overriding

OvixChainlinkOracleV2.sol:L116-L129

Description:

Example:

function setFeed(

 address oToken,

 address feed,

 uint256 heartbeat

) external onlyAdmin {

 require(

 feed != address(0) && feed != address(this),

 "invalid feed address"

);

 heartbeats[IAggregatorV2V3(feed)] = heartbeat;

 feeds[oToken] = IAggregatorV2V3(feed);

 emit FeedSet(feed, oToken);

 emit HeartbeatSet(feed, heartbeat);

}

SOL

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Recommendation:

Alleviation:

Unitroller Manual Review Findings

Type Severity Location

Logical Fault

The setAdmin function bypasses the pending administrator scheme imposed by the

Compound system and assigns a new administrator directly.

contracts/Unitroller.sol

We advise this trait of the system to be omitted from it as it serves no purpose and

diminishes the security of the system.

The 0vix team has considered this exhibit but applied a improper fix, as the setAdmin

function emits an incorrect event with incorrect address values.

UNI-01M: Inexplicable Introduction of Pending Administrator
Bypass

Unitroller.sol:L131-L136

Description:

Example:

function setAdmin(address _admin) public {

 if(msg.sender != admin) revert("Unauthorized");

 address oldAdmin = admin;

 admin = _admin;

 emit NewAdmin(oldAdmin, admin);

}

SOL

131

132

133

134

135

136

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#logical-fault
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Unitroller.sol#L131-L136
https://omniscia.io/reports/0vix-lending-protocol/

VoteController Manual Review Findings

Type Severity Location

Centralization Concern

The totalEmissions the protocol performs are in complete control of the system's

administrator.

contracts/vote-escrow/VoteController.sol

We advise this trait to be re-evaluated as a more decentralized method may be more optimal

such as a governance vote setting them.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

VCR-01M: Potentially Overly Centralized Protocol
Functionality

VoteController.sol:L640-L645

Description:

Example:

function setTotalEmissions(uint256 _totalEmissions) external onlyAdmin {

 uint256 oldEmissions = totalEmissions;

 totalEmissions = _totalEmissions;

 emit TotalEmissionsChanged(oldEmissions, totalEmissions);

}

SOL

640

641

642

643

644

645

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#centralization-concern
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L640-L645
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Mathematical Operations

The reward speed adjustment for the Compound system performed by the VoteController

attempts to divide the reward expected to two equal parts by dividing by 2 , thus causing

truncation.

The cumulative reward speed set will be less than the desired one.

contracts/vote-escrow/VoteController.sol

We advise the _setRewardSpeeds function to be invoked with the second argument being a

rewards array with the reward / 2 entry and the third argument to be a uint256 array with

a reward - rewards[0] entry, accounting for any truncation that may occur.

The 0vix team applied a fix that alleviates the aforementioned potential truncation.

VCR-02M: Truncation of Reward Speed Achieved

VoteController.sol:L677

Description:

Impact:

Example:

address[] memory addrs = new address[](1);

addrs[0] = addr;

uint256[] memory rewards = new uint256[](1);

rewards[0] = reward/2;

// current implementation doesn't differentiate supply and borrow reward sp

comp._setRewardSpeeds(addrs, rewards, rewards);

SOL

673

674

675

676

677

678

679

680

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#mathematical-operations
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L677
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Logical Fault ,

The removal of a market will cause a corrupt system state as the fixedRewardWeights and

sumWeights entries are not properly synchronized.

The corrupt system state will ultimately cause incorrect rewards to be updated.

contracts/vote-escrow/VoteController.sol

VCR-03M: Improper Market Removal Methodology

VoteController.sol:L307-L321 L337-L366

Description:

Impact:

Example:

/**

 * @notice Sets percentage of the emmission community can vote upon

 * @param _markets The struct containing market's address and its fixed wei

 */

function setFixedRewardWeights(Market[] memory _markets) public onlyAdmin {

 uint256 sumWeights = 0;

 for (uint256 i = 0; i < markets.length(); i++) {

 sumWeights += fixedRewardWeights[markets.at(i)];

 }

 for (uint256 i = 0; i < _markets.length; i++) {

 require(

 markets.contains(_markets[i].market),

 "Market is not in the list"

);

 uint256 oldWeight = fixedRewardWeights[_markets[i].market];

 fixedRewardWeights[_markets[i].market] = _markets[i].weight;

 sumWeights = sumWeights - oldWeight + _markets[i].weight;

 emit FixedWeightChanged(

 _markets[i].market,

 oldWeight,

 _markets[i].weight

);

SOL

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#logical-fault
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L307-L321
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L337-L366
https://omniscia.io/reports/0vix-lending-protocol/

We advise the removal of a market to properly synchronize those and all relevant system

variables that such an action should, such as the timeWeight of an address.

The 0vix team applied the recommended fix, although a gap of corrupted values still exists

between a market removal and the market weights update. We advise the 0vix team to revisit

this exhibit and ensure no corrupt data entries remain in the contract.

);

 }

 require(sumWeights <= HUNDRED_PERCENT, "New weight(s) too high");

}

362

363

364

365

366

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/

BoostManager Code Style Findings

Type Severity Location

Gas Optimization

The linked ternary operator is redundant as the result of its evaluation can be yielded by the

function directly.

contracts/vote-escrow/BoostManager.sol

We advise the result of the evaluation in its negated form (!=) to be yielded by the function

instead.

The 0vix team changed the linked statement to an inequality conditional.

BMR-01C: Redundant Ternary Operator

BoostManager.sol:L74

Description:

Example:

return veBalances[user] == 0 ? false : true;

SOL

74

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/BoostManager.sol#L74
https://omniscia.io/reports/0vix-lending-protocol/

Comptroller Code Style Findings

Type Severity Location

Code Style

The linked variable has no visibility specifier explicitly set.

contracts/Comptroller.sol

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current behaviour is for the compiler to assign one automatically which may deviate between

pragma versions.

The 0vix team applied the recommended fix.

COM-01C: Inexistent Visibility Specifier

Comptroller.sol:L137

Description:

Example:

address vixAddress;

SOL

137

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L137
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Code Style , ,

The linked variable is labelled as deltaBlocks while it represents a delta between

timestamps.

contracts/Comptroller.sol

We advise the variable to be aptly renamed.

The 0vix team applied the recommended fix.

COM-02C: Mislabelled Local Variable

Comptroller.sol:L1513 L1544 L1675

Description:

Example:

uint256 deltaBlocks = timestamp - lastContributorTimestamp[contributor];

SOL

1675

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L1513
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L1544
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L1675
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization

, , ,
, , , ,
, , , ,
, , , , ,

, , , , ,

The linked function arguments are redundantly given an explicit name and raise compiler

issues unless the redundant referencing statements exist in the code as linked.

contracts/Comptroller.sol

We advise the code to instead omit the names from the function signature declarations to

avoid the compilation error entirely and still comply with the relevant interfaces of the

system.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

COM-03C: Redundantly Named Function Arguments

Comptroller.sol:L329 L332 L359-L362
L365-L368 L441-L442 L447-L448 L530-L532
L535-L537 L555-L557 L560-L562 L582-L586
L589-L593 L612 L617 L678-L683 L686-L691
L712 L718 L751-L755 L758-L762 L810-L813
L816-L819

Description:

Example:

function mintAllowed(

 address oToken,

 address minter,

 uint256 mintAmount

) external override returns (uint256) {

 // Pausing is a very serious situation - we revert to sound the alarms

 mintAmount; // not used yet

SOL

326

327

328

329

330

331

332

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L329
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L332
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L359-L362
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L365-L368
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L441-L442
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L447-L448
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L530-L532
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L535-L537
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L555-L557
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L560-L562
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L582-L586
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L589-L593
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L612
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L617
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L678-L683
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L686-L691
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L712
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L718
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L751-L755
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L758-L762
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L810-L813
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L816-L819
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization

The linked variable is assigned to only once during the contract's constructor .

contracts/Comptroller.sol

We advise it to be set as immutable greatly optimizing its read-access gas cost.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

COM-04C: Variable Mutability Specifier (Immutable)

Comptroller.sol:L146

Description:

Example:

constructor() {

 admin = msg.sender;

}

SOL

145

146

147

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Comptroller.sol#L146
https://omniscia.io/reports/0vix-lending-protocol/

ExponentialNoError Code Style Findings

Type Severity Location

Code Style ,

The linked numeric representations are meant to represent the limit of their corresponding

type (uint224 and uint32 respectively) but do so in a deprecated way.

contracts/libraries/ExponentialNoError.sol

We advise the comparisons to be adjusted to inclusive ones (<=) and the literals to be

replaced by the type(uintXX).max representation of the respective type.

The 0vix team applied the recommended fix.

ENE-01C: Deprecated Numeric Representation

ExponentialNoError.sol:L78 L83

Description:

Example:

require(n < 2**224, "safe224 overflow");

 return uint224(n);

}

function safe32(uint n) pure internal returns (uint32) {

 require(n < 2**32, "safe32 overflow");

 return uint32(n);

}

SOL

77

78

79

80

81

82

83

84

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/libraries/ExponentialNoError.sol#L78
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/libraries/ExponentialNoError.sol#L83
https://omniscia.io/reports/0vix-lending-protocol/

JumpRateModel Code Style Findings

Type Severity Location

Code Style , , ,

The linked documentation lines contain a typographic error.

contracts/interest-rate-models/JumpRateModel.sol

We advise it to be corrected.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

JRM-01C: Documentation Typo

JumpRateModel.sol:L76 L80 L95 L100

Description:

Example:

/**

 * @notice Calculates the current borrow rate per timestmp, with the error

 * @param cash The amount of cash in the market

 * @param borrows The amount of borrows in the market

 * @param reserves The amount of reserves in the market

 * @return The borrow rate percentage per timestmp as a mantissa (scaled by

 */

SOL

75

76

77

78

79

80

81

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L76
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L80
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L95
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L100
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Language Specific ,

The linked contract utilizes SafeMath when it is compiled with a pragma version of 0.8.X .

contracts/interest-rate-models/JumpRateModel.sol

Given that safe arithmetics are toggled on by default in these versions, we advise the usage

of SafeMath to be omitted from the codebase as it incurs an additional gas cost at verbosal

benefit.

The 0vix team applied the recommended fix.

JRM-02C: Redundant Usage of SafeMath

JumpRateModel.sol:L2 L12

Description:

Example:

pragma solidity 0.8.4;

import "./interfaces/IInterestRateModel.sol";

import "../libraries/SafeMath.sol";

/**

 * @title 0VIX's JumpRateModel Contract

 * @author 0VIX

 */

contract JumpRateModel is IInterestRateModel {

 using SafeMath for uint;

SOL

2

3

4

5

6

7

8

9

10

11

12

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#language-specific
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L2
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L12
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization , , ,

The linked variables are assigned to only once during the contract's constructor .

contracts/interest-rate-models/JumpRateModel.sol

We advise them to be set as immutable greatly optimizing their read-access gas cost.

The 0vix team applied the recommended fix.

JRM-03C: Variable Mutability Specifiers (Immutable)

JumpRateModel.sol:L51 L52 L53 L54

Description:

Example:

constructor(uint baseRatePerYear, uint multiplierPerYear, uint jumpMultipli

 baseRatePerTimestamp = baseRatePerYear.mul(1e18).div(timestampsPerYear)

 multiplierPerTimestamp = multiplierPerYear.mul(1e18).div(timestampsPerY

 jumpMultiplierPerTimestamp = jumpMultiplierPerYear.mul(1e18).div(timest

 kink = kink_;

 emit NewInterestParams(baseRatePerTimestamp, multiplierPerTimestamp, ju

}

SOL

50

51

52

53

54

55

56

57

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L51
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L52
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L53
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/interest-rate-models/JumpRateModel.sol#L54
https://omniscia.io/reports/0vix-lending-protocol/

Maximillion Code Style Findings

Type Severity Location

Gas Optimization

The linked variable is assigned to only once during the contract's constructor .

contracts/Maximillion.sol

We advise it to be set as immutable greatly optimizing its read-access gas cost.

The 0vix team applied the recommended fix.

MAX-01C: Variable Mutability Specifier (Immutable)

Maximillion.sol:L20

Description:

Example:

constructor(OMatic oMatic_) {

 oMatic = oMatic_;

}

SOL

19

20

21

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Maximillion.sol#L20
https://omniscia.io/reports/0vix-lending-protocol/

OToken Code Style Findings

Type Severity Location

Gas Optimization

The linked events are meant to emit the previous and new value of a storage variable being

adjusted, however, to do so they redundantly use a local variable.

contracts/otokens/abstract/OToken.sol

We advise the emission to occur prior to the assignment of each storage variable by setting

the first argument of the event as the existing storage value and the second argument as the

input argument of the function.

The 0vix team applied the recommended fix.

OTN-01C: Inefficient Event Arguments

OToken.sol:L1818

Description:

Example:

function setAdmin(address payable _admin) public {

 require(msg.sender == admin, "Unauthorized");

 address oldAdmin = admin;

 admin = _admin;

 emit NewAdmin(oldAdmin, admin);

}

SOL

1814

1815

1816

1817

1818

1819

Recommendation:

Alleviation:

Type Severity Location

Gas Optimization

The original Compound codebase of the borrowable tokens did not allow the specification of

a "maximum" redeemAmountIn flag and thus only performed a divScalarByExpTruncate

instruction. In the new implementation by 0Vix, the flag is present and allows a

mulScalarTruncate operation to be performed instead that is a one-to-one equivalent of

specifying redeemTokensIn as type(uint256).max .

contracts/otokens/abstract/OToken.sol

OTN-02C: Inexplicable Flag Introduction

OToken.sol:L961

Description:

Example:

/* If redeemTokensIn > 0: */

if (redeemTokensIn > 0) {

 /*

 * We calculate the exchange rate and the amount of underlying to be re

 * redeemTokens = redeemTokensIn

 * redeemAmount = redeemTokensIn x exchangeRateCurrent

 */

 if (redeemTokensIn == type(uint256).max) {

 vars.redeemTokens = accountTokens[redeemer];

 } else {

 vars.redeemTokens = redeemTokensIn;

 }

 (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(

 Exp({mantissa: vars.exchangeRateMantissa}),

 vars.redeemTokens

);

 if (vars.mathErr != MathError.NO_ERROR) {

 return

 failOpaque(

 Error.MATH_ERROR,

 FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED,

 uint256(vars.mathErr)

);

 }

} else {

SOL

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

Given that the functionality is already exposed by the codebase, we advise the flag to be

omitted to reduce the complexity of the redemption amount based redeemFresh code flow.

The 0vix team applied the recommended fix.

} {

 /*

 * We get the current exchange rate and calculate the amount to be rede

 * redeemTokens = redeemAmountIn / exchangeRate

 * redeemAmount = redeemAmountIn

 */

 if (redeemAmountIn == type(uint256).max) {

 vars.redeemTokens = accountTokens[redeemer];

 (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(

 Exp({mantissa: vars.exchangeRateMantissa}),

 vars.redeemTokens

);

 if (vars.mathErr != MathError.NO_ERROR) {

 return

 failOpaque(

 Error.MATH_ERROR,

 FailureInfo

 .REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED,

 uint256(vars.mathErr)

);

 }

 } else {

 vars.redeemAmount = redeemAmountIn;

 (vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(

 redeemAmountIn,

 Exp({mantissa: vars.exchangeRateMantissa})

);

 if (vars.mathErr != MathError.NO_ERROR) {

 return

 failOpaque(

 Error.MATH_ERROR,

 FailureInfo

 .REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED,

 uint256(vars.mathErr)

);

 }

 }

}

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

Recommendation:

Alleviation:

Ovix Code Style Findings

Type Severity Location

Code Style ,

The linked numeric representations are meant to represent the limit of their corresponding

type (uint32 and uint96 respectively) but do so in a deprecated way.

contracts/governance/Ovix.sol

OVI-01C: Deprecated Numeric Representation

Ovix.sol:L463 L472

Description:

Example:

function safe32(uint n, string memory errorMessage)

 internal

 pure

 returns (uint32)

{

 require(n < 2**32, errorMessage);

 return uint32(n);

}

function safe96(uint n, string memory errorMessage)

 internal

 pure

 returns (uint96)

{

 require(n < 2**96, errorMessage);

 return uint96(n);

}

SOL

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/governance/Ovix.sol#L463
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/governance/Ovix.sol#L472
https://omniscia.io/reports/0vix-lending-protocol/

We advise the comparisons to be adjusted to inclusive ones (<=) and the literals to be

replaced by the type(uintXX).max representation of the respective type.

The 0vix team partially applied the recommended fix, as the last unsigned integer of a said

type is not included.

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Mathematical Operations ,

The linked casting operations are inefficient as their safety is guaranteed by the require

checks that precede them.

contracts/governance/Ovix.sol

We advise them to be performed within an unchecked code block optimizing their gas cost.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

OVI-02C: Inefficient Casting Operations

Ovix.sol:L464 L473

Description:

Example:

function safe32(uint n, string memory errorMessage)

 internal

 pure

 returns (uint32)

{

 require(n < 2**32, errorMessage);

 return uint32(n);

}

SOL

458

459

460

461

462

463

464

465

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#mathematical-operations
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/governance/Ovix.sol#L464
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/governance/Ovix.sol#L473
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization

The linked variable is assigned to only once during the contract's constructor .

contracts/governance/Ovix.sol

We advise it to be set as immutable greatly optimizing its read-access gas cost.

The 0vix team has considered this exhibit but opted not to apply a remediation for it in the

current iteration of the codebase.

OVI-03C: Variable Mutability Specifier (Immutable)

Ovix.sol:L94

Description:

Example:

constructor(

 address account,

 string memory _name,

 string memory _symbol,

 uint _supply

) {

 name = _name;

 symbol = _symbol;

 totalSupply = _supply * 1 ether;

 balances[account] = uint96(totalSupply);

 emit Transfer(address(0), account, totalSupply);

}

SOL

86

87

88

89

90

91

92

93

94

95

96

97

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/governance/Ovix.sol#L94
https://omniscia.io/reports/0vix-lending-protocol/

OvixChainlinkOracle Code Style Findings

Type Severity Location

Gas Optimization

The linked event is meant to emit the previous and new value of a storage variable being

adjusted, however, to do so it redundantly uses a local variable.

contracts/chainlink/OvixChainlinkOracle.sol

We advise the emission to occur prior to the assignment of the storage variable by setting

the first argument of the event as the existing storage value and the second argument as the

input argument of the function.

The 0vix team has opted to remove the linked contract from codebase altogether.

OCO-01C: Inefficient Event Arguments

OvixChainlinkOracle.sol:L97

Description:

Example:

function setAdmin(address newAdmin) external onlyAdmin {

 address oldAdmin = admin;

 admin = newAdmin;

 emit NewAdmin(oldAdmin, newAdmin);

}

SOL

93

94

95

96

97

98

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L97
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization ,

The linked statements perform key-based lookup operations on mapping declarations from

storage multiple times for the same key redundantly.

contracts/chainlink/OvixChainlinkOracle.sol

As the lookups internally perform an expensive keccak256 operation, we advise the lookups

to be cached wherever possible to a single local declaration that either holds the value of the

mapping in case of primitive types or holds a storage pointer to the struct contained.

The 0vix team has opted to remove the linked contract from codebase altogether.

OCO-02C: Inefficient mapping Lookups

OvixChainlinkOracle.sol:L38 L39

Description:

Example:

if (prices[address(token)] != 0) {

 price = prices[address(token)];

} else {

 price = getChainlinkPrice(getFeed(token.symbol()));

}

SOL

38

39

40

41

42

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L38
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L39
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Code Style

The linked variable has no visibility specifier explicitly set.

contracts/chainlink/OvixChainlinkOracle.sol

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current behaviour is for the compiler to assign one automatically which may deviate between

pragma versions.

The 0vix team has opted to remove the linked contract from codebase altogether.

OCO-03C: Inexistent Visibility Specifier

OvixChainlinkOracle.sol:L13

Description:

Example:

string nativeSymbol;

SOL

13

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L13
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Code Style

The linked comment indicates that the conditional that follows protects the price from

being multiplied by 0 , however, the operation 10**0 would yield a multiplication with 1 and

thus not affect the code's operation.

contracts/chainlink/OvixChainlinkOracle.sol

While a gas benefit is observed by the current code structure, we advise a simple ternary

operator to be utilized instead unless the decimal delta exhibit is applied in which case only

the comment should be removed.

The 0vix team has opted to remove the linked contract from codebase altogether.

OCO-04C: Misleading Behaviour Comment

OvixChainlinkOracle.sol:L45-L50

Description:

Example:

// Ensure that we don't multiply the result by 0

if (decimalDelta > 0) {

 return price.mul(10**decimalDelta);

} else {

 return price;

}

SOL

45

46

47

48

49

50

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L45-L50
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Language Specific ,

The linked contract utilizes SafeMath when it is compiled with a pragma version of 0.8.X .

contracts/chainlink/OvixChainlinkOracle.sol

Given that safe arithmetics are toggled on by default in these versions, we advise the usage

of SafeMath to be omitted from the codebase as it incurs an additional gas cost at verbosal

benefit.

The 0vix team has opted to remove the linked contract from codebase altogether.

OCO-05C: Redundant Usage of SafeMath

OvixChainlinkOracle.sol:L2 L11

Description:

Example:

pragma solidity 0.8.4;

import "../PriceOracle.sol";

import "../otokens/OErc20.sol";

import "../otokens/interfaces/IEIP20.sol";

import "../libraries/SafeMath.sol";

import "./interfaces/IAggregatorV2V3.sol";

contract OvixChainlinkOracle is PriceOracle {

 using SafeMath for uint;

SOL

2

3

4

5

6

7

8

9

10

11

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#language-specific
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L2
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracle.sol#L11
https://omniscia.io/reports/0vix-lending-protocol/

OvixChainlinkOracleV2 Code Style Findings

Type Severity Location

Gas Optimization

The linked event is meant to emit the previous and new value of a storage variable being

adjusted, however, to do so it redundantly uses a local variable.

contracts/chainlink/OvixChainlinkOracleV2.sol

We advise the emission to occur prior to the assignment of the storage variable by setting

the first argument of the event as the existing storage value and the second argument as the

input argument of the function.

The 0vix team applied the recommended fix.

OCV-01C: Inefficient Event Arguments

OvixChainlinkOracleV2.sol:L151

Description:

Example:

function setAdmin(address newAdmin) external onlyAdmin {

 address oldAdmin = admin;

 admin = newAdmin;

 emit NewAdmin(oldAdmin, newAdmin);

}

SOL

147

148

149

150

151

152

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L151
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization ,

The linked setter function is invoked from the constructor of the contract and inefficiently

applies access control.

contracts/chainlink/OvixChainlinkOracleV2.sol

We advise the code within setOMatic to be refactored to an internal / private function

that is consequently utilized by both the constructor and the public facing function.

The 0vix team applied the recommended fix.

OCV-02C: Inefficient Initialization of Contract

OvixChainlinkOracleV2.sol:L40 L154-L156

Description:

Example:

function setOMatic(address _oMatic) public onlyAdmin {

 oMatic = _oMatic;

}

SOL

154

155

156

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L40
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L154-L156
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization , , ,
, ,

The linked statements perform key-based lookup operations on mapping declarations from

storage multiple times for the same key redundantly.

contracts/chainlink/OvixChainlinkOracleV2.sol

As the lookups internally perform an expensive keccak256 operation, we advise the lookups

to be cached wherever possible to a single local declaration that either holds the value of the

mapping in case of primitive types or holds a storage pointer to the struct contained.

The 0vix team applied the recommended fix, although in only one of the many exhibits.

OCV-03C: Inefficient mapping Lookups

OvixChainlinkOracleV2.sol:L58 L59 L112
L113 L135 L136

Description:

Example:

function setHeartbeat(address oToken, uint256 heartbeat)

 external

 onlyAdmin

{

 heartbeats[feeds[oToken]] = heartbeat;

 emit HeartbeatSet(address(feeds[oToken]), heartbeat);

}

SOL

131

132

133

134

135

136

137

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L58
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L59
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L112
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L113
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L135
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L136
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Code Style

The linked variable has no visibility specifier explicitly set.

contracts/chainlink/OvixChainlinkOracleV2.sol

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current behaviour is for the compiler to assign one automatically which may deviate between

pragma versions.

The 0vix team applied the recommended fix.

OCV-04C: Inexistent Visibility Specifier

OvixChainlinkOracleV2.sol:L22

Description:

Example:

mapping(IAggregatorV2V3 => uint256) heartbeats;

SOL

22

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L22
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Language Specific ,

The linked contract utilizes SafeMath when it is compiled with a pragma version of 0.8.X .

contracts/chainlink/OvixChainlinkOracleV2.sol

Given that safe arithmetics are toggled on by default in these versions, we advise the usage

of SafeMath to be omitted from the codebase as it incurs an additional gas cost at verbosal

benefit.

The 0vix team applied the recommended fix.

OCV-05C: Redundant Usage of SafeMath

OvixChainlinkOracleV2.sol:L2 L11

Description:

Example:

pragma solidity 0.8.4;

import "../PriceOracle.sol";

import "../otokens/OErc20.sol";

import "../otokens/interfaces/IEIP20.sol";

import "../libraries/SafeMath.sol";

import "./interfaces/IAggregatorV2V3.sol";

contract OvixChainlinkOracleV2 is PriceOracle {

 using SafeMath for uint;

SOL

2

3

4

5

6

7

8

9

10

11

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#language-specific
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L2
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/chainlink/OvixChainlinkOracleV2.sol#L11
https://omniscia.io/reports/0vix-lending-protocol/

Unitroller Code Style Findings

Type Severity Location

Code Style

The linked statement evaluates a conditional in an if clause and performs a revert

statement after it with a textual argument.

contracts/Unitroller.sol

We advise either a require check to be introduced or a proper revert to be set that uses a

custom error defined at the contract level, the former of which we advise.

The 0vix team applied the recommended fix.

UNI-01C: Deprecated if-revert Pattern

Unitroller.sol:L132

Description:

Example:

if(msg.sender != admin) revert("Unauthorized");

SOL

132

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/Unitroller.sol#L132
https://omniscia.io/reports/0vix-lending-protocol/

VoteController Code Style Findings

Type Severity Location

Code Style ,

The linked representations of numeric literals are sub-optimally represented decreasing the

legibility of the codebase.

contracts/vote-escrow/VoteController.sol

To properly illustrate each value's purpose, we advise the following guidelines to be followed.

For values meant to depict fractions with a base of 1e18 , we advise fractions to be utilized

directly (i.e. 1e17 becomes 0.1e18) as they are supported.
For values meant to represent a

percentage base, we advise each value to utilize the underscore (_) separator to discern the

percentage decimal (i.e. 10000 becomes 100_00 , 300 becomes 3_00 and so on).
Finally, for

large numeric values we simply advise the underscore character to be utilized again to

represent them (i.e. 1000000 becomes 1_000_000).

The 0vix team applied the recommended fix.

VCR-01C: Illegible Numeric Value Representations

VoteController.sol:L45 L195

Description:

Example:

uint256 public constant HUNDRED_PERCENT = 10000;

SOL

45

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L45
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L195
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization , ,

The linked for loops evaluate their limit inefficiently on each iteration.

contracts/vote-escrow/VoteController.sol

We advise the statements within the for loop limits to be relocated outside to a local

variable declaration that is consequently utilized for the evaluations to significantly reduce

the codebase's gas cost. We should note the same optimization is applicable for storage

reads present in those limits as they are newly read on each iteration (i.e. length members

of arrays in storage).

The 0vix team applied the recommended fix.

VCR-02C: Inefficient Loop Limit Evaluations

VoteController.sol:L344 L648 L665

Description:

Example:

for (uint256 i = 0; i < markets.length(); i++) {

SOL

344

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L344
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L648
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L665
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Code Style , ,

The linked require checks have no error messages explicitly defined.

contracts/vote-escrow/VoteController.sol

We advise each to be set so to increase the legibility of the codebase and aid in validating

the require checks' conditions.

The 0vix team applied the recommended fix.

VCR-03C: Inexistent Error Messages

VoteController.sol:L183 L184 L185

Description:

Example:

require(_votingEscrow != address(0));

SOL

183

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L183
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L184
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L185
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Code Style ,

The linked value literal is repeated across the codebase multiple times.

contracts/vote-escrow/VoteController.sol

We advise it to be set to a constant variable instead optimizing the legibility of the

codebase.

The 0vix team applied the recommended fix.

VCR-04C: Repetitive Value Literal

VoteController.sol:L231 L265

Description:

Example:

for (uint256 i = 0; i < 500; i++) {

SOL

231

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#code-style
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L231
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L265
https://omniscia.io/reports/0vix-lending-protocol/

Type Severity Location

Gas Optimization ,

The linked variables indirectly achieve the same purpose, illustrating whether a particular

market is part of the votable pool.

contracts/vote-escrow/VoteController.sol

VCR-05C: Same-Purpose Variables

VoteController.sol:L30 L90

Description:

Example:

/**

 * @notice Add market `addr` essentially making it votable; manual fixedWei

 * @dev admin only

 * @param addr Market address

 */

function addMarket(address addr) external onlyAdmin {

 require(!isVotable[addr], "Cannot add the same market twice");

 require(comp.isMarket(addr), "address is not an 0vix market");

 isVotable[addr] = true;

 markets.add(addr);

 uint256 nextTime = ((block.timestamp + PERIOD) / PERIOD) * PERIOD;

 if (timeTotal == 0) timeTotal = nextTime;

 timeWeight[addr] = nextTime;

 emit NewMarket(addr);

}

/**

 * @notice Remove market `addr` essentially making it non-votable; manual f

 * @dev admin only

 * @param addr Market address

 */

function removeMarket(address addr) external onlyAdmin {

 require(isVotable[addr], "Market doesn't exist");

 isVotable[addr] = false;

SOL

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

https://omniscia.io/reports/0vix-lending-protocol/appendix/finding-types#gas-optimization
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L30
https://github.com/0Vix/0vix-protocol/blob/016c9048607723cdf6b1699bdf9b7241aedf2d03/contracts/vote-escrow/VoteController.sol#L90
https://omniscia.io/reports/0vix-lending-protocol/

We advise either of the two to be utilized, preferably the markets enumerable set, to

optimize the system's purpose.

The 0vix team applied the recommended fix and removed the redundant state variable.

 markets.remove(addr);

 // todo test what happens with market's lists (e.g. timeWeight[addr]) w

 emit MarketRemoved(addr);

}

315

316

317

318

319

320

321

Recommendation:

Alleviation:

https://omniscia.io/reports/0vix-lending-protocol/

Finding Types

A description of each finding type included in the report can be found below and is linked by

each respective finding. A full list of finding types Omniscia has defined will be viewable at

the central audit methodology we will publish soon.

Many contracts that interact with DeFi contain a set of complex external call executions that

need to happen in a particular sequence and whose execution is usually taken for granted

whereby it is not always the case. External calls should always be validated, either in the form

of require checks imposed at the contract-level or via more intricate mechanisms such as

invoking an external getter-variable and ensuring that it has been properly updated.

As there are no inherent guarantees to the inputs a function accepts, a set of guards should

always be in place to sanitize the values passed in to a particular function.

These types of issues arise when a linked code segment may not behave as expected, either

due to mistyped code, convoluted if blocks, overlapping functions / variable names and

other ambiguous statements.

Language specific issues arise from certain peculiarities that the Solidity language boasts

that discerns it from other conventional programming languages. For example, the EVM is a

256-bit machine meaning that operations on less-than-256-bit types are more costly for the

EVM in terms of gas costs, meaning that loops utilizing a uint8 variable because their limit

will never exceed the 8-bit range actually cost more than redundantly using a uint256

variable.

External Call Validation

Input Sanitization

Indeterminate Code

Language Specific

https://omniscia.io/pirex-multi-token-convex-wrapper/

An official Solidity style guide exists that is constantly under development and is adjusted on

each new Solidity release, designating how the overall look and feel of a codebase should be.

In these types of findings, we identify whether a project conforms to a particular naming

convention and whether that convention is consistent within the codebase and legible. In

case of inconsistencies, we point them out under this category. Additionally, variable

shadowing falls under this category as well which is identified when a local-level variable

contains the same name as a contract-level variable that is present in the inheritance chain

of the local execution level's context.

Gas optimization findings relate to ways the codebase can be optimized to reduce the gas

cost involved with interacting with it to various degrees. These types of findings are

completely optional and are pointed out for the benefit of the project's developers.

These types of findings relate to incompatibility between a particular standard's

implementation and the project's implementation, oftentimes causing significant issues in the

usability of the contracts.

In Solidity, math generally behaves differently than other programming languages due to the

constraints of the EVM. A prime example of this difference is the truncation of values during

a division which in turn leads to loss of precision and can cause systems to behave

incorrectly when dealing with percentages and proportion calculations.

This category is a bit broad and is meant to cover implementations that contain flaws in the

way they are implemented, either due to unimplemented functionality, unaccounted-for edge

cases or similar extraordinary scenarios.

This category covers all findings that relate to a significant degree of centralization present in

the project and as such the potential of a Single-Point-of-Failure (SPoF) for the project that

we urge them to re-consider and potentially omit.

Code Style

Gas Optimization

Standard Conformity

Mathematical Operations

Logical Fault

Centralization Concern

https://omniscia.io/pirex-multi-token-convex-wrapper/

This category relates to findings that arise from re-entrant external calls (such as EIP-721

minting operations) and revolve around the inapplicacy of the Checks-Effects-Interactions

(CEI) pattern, a pattern that dictates checks (require statements etc.) should occur before

effects (local storage updates) and interactions (external calls) should be performed last.

Reentrant Call

https://omniscia.io/pirex-multi-token-convex-wrapper/

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary /

public / private) and is in effect for all past, current, and future audit reports that are

produced and hosted under Omniscia:

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity

of and highlight any vulnerabilities, bugs or errors, intentional or unintentional, that may be

present in the codebase that were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies.

This makes them extremely volatile assets. Any assessment report obtained on such volatile

and nascent assets may include unpredictable results which may lead to positive or negative

outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security

review does not constitute endorsement, agreement or acceptance for the Project and

technology that was reviewed. Users relying on this security review should not consider this

as having any merit for financial advice or technological due diligence in any shape, form or

nature.

The veracity and accuracy of the findings presented in this report relate solely to the

proficiency, competence, aptitude and discretion of our auditors. Omniscia and its employees

make no guarantees, nor assurance that the contracts are free of exploits, bugs,

vulnerabilities, deprecation of technologies or any system / economical / mathematical

malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or

parties on any objective, goal or justification without due written assent, acquiescence or

approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial

or investment advice, nor should it be used to signal that any person reading this report

should invest their funds without sufficient individual due diligence regardless of the findings

presented in this report.

IMPORTANT TERMS & CONDITIONS REGARDING OUR
SECURITY AUDITS/REVIEWS/REPORTS AND ALL
PUBLIC/PRIVATE CONTENT/DELIVERABLES

https://omniscia.io/pirex-multi-token-convex-wrapper/

Information in this report is provided 'as is'. Omniscia is under no covenant to the

completeness, accuracy or solidity of the contracts reviewed. Omniscia's goal is to help

reduce the attack vectors/surface and the high level of variance associated with utilizing new

and consistently changing technologies.

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality

of the technology that was in scope for this security review.

In no event will Omniscia, its partners, employees, agents or any parties related to the

design/creation of this security review be ever liable to any parties for, or lack thereof,

decisions and/or actions with regards to the information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies

are not standardized, highly prone to malfunction and extremely speculative by nature. No

due diligence and/or safeguards may be insufficient and users should exercise maximum

caution when participating and/or investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and

actionable recommendations to the Project team (the “client”) with respect to the

rectification, amendment and/or revision of any highlighted issues, vulnerabilities or exploits

within the contracts in scope for this engagement.

All services, the security reports, discussions, work product, attack vectors description or

any other materials, products or results of this security review engagement is provided "as

is" and "as available" and with all faults, uncertainty and defects without warranty or

guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any

inaccuracies of content, suggestions, materials or for any loss, delay, damage of any kind

which arose as a result of this engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of

any kind whatsoever that resulted in this engagement and the customer having access to or

use of the products, engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any

associated services or materials, shall not be considered or relied upon as any form of

financial, investment, tax, legal, regulatory, or any other type of advice.

https://omniscia.io/pirex-multi-token-convex-wrapper/

