
Public

SMART CONTRACT AUDIT REPORT

for

0VIX Protocol

Prepared By: Xiaomi Huang

PeckShield
May 3, 2022

1/25 PeckShield Audit Report #: 2022-148

contact@peckshield.com

Public

Document Properties

Client 0VIX
Title Smart Contract Audit Report
Target 0VIX
Version 1.0
Author Xuxian Jiang
Auditors Jing Wang, Patrick Lou, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 May 3, 2022 Xuxian Jiang Final Release
1.0-rc1 April 17, 2022 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/25 PeckShield Audit Report #: 2022-148

Public

Contents

1 Introduction 4
1.1 About 0VIX . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Timely Reward Update Upon totalEmissions Change 11
3.2 Improper Funding Source In VotingEscrow::_deposit_for() 12
3.3 Possible Front-Running For Unintended Payment . 13
3.4 Improved Logic in OToken::borrowFresh()/repayBorrowFresh() 15
3.5 Non ERC20-Compliance Of OToken . 16
3.6 Proper Market Removal in VoteController . 19
3.7 Interface Inconsistency Between OMatic And OErc20 20
3.8 Trust Issue of Admin Keys . 21

4 Conclusion 23

References 24

3/25 PeckShield Audit Report #: 2022-148

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
0VIX protocol, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About 0VIX

0VIX is a lending and borrowing protocol that is designed to be the Polygon’s next generation money
market platform. The protocol design is architected and inspired based on Compound, which allows
users to utilize their cryptocurrencies by supplying collateral to the protocol that may be borrowed
by staking over-collateralized cryptocurrencies. It also provides novel solutions to retaining liquidity,
ensuring the health of the protocol and to foster the growth of the Polygon ecosystem. The basic
information of 0VIX is as follows:

Table 1.1: Basic Information of 0VIX

Item Description
Name 0VIX

Website https://www.0vix.com/
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report May 3, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/0Vix/0vix-contracts.git (00f610a)

4/25 PeckShield Audit Report #: 2022-148

https://www.0vix.com/

Public

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/0Vix/0vix-contracts.git (82079c9)

1.2 About PeckShield

PeckShield Inc. [12] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [11]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract

5/25 PeckShield Audit Report #: 2022-148

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/25 PeckShield Audit Report #: 2022-148

Public

is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [10], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/25 PeckShield Audit Report #: 2022-148

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/25 PeckShield Audit Report #: 2022-148

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the 0VIX protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 6

Informational 0

Total 8

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/25 PeckShield Audit Report #: 2022-148

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities and 6 low-severity vulnerabilities.

Table 2.1: Key 0VIX Audit Findings

ID Severity Title Category Status
PVE-001 Low Timely Reward Update Upon totalEmis-

sions Change
Business Logic Resolved

PVE-002 Medium Improper Funding Source In VotingE-
scrow::_deposit_for()

Business Logic Resolved

PVE-003 Low Possible Front-Running For Unintended
Payment

Time and State Resolved

PVE-004 Low Improved Logic in OTo-
ken::borrowFresh()/repayBorrowFresh()

Coding Practice Resolved

PVE-005 Low Non ERC20-Compliance Of OToken Coding Practice Resolved
PVE-006 Low Proper Market Removal in VoteCon-

troller
Coding Practices Resolved

PVE-007 Low Interface Inconsistency Between OMatic
And OErc20

Coding Practice Resolved

PVE-008 Medium Trust Issue of Admin Keys Security Features Mitigated

Besides the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/25 PeckShield Audit Report #: 2022-148

Public

3 | Detailed Results

3.1 Timely Reward Update Upon totalEmissions Change

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: VoteController

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

The 0VIX tokenomics are supported by a core VoteController contract, which controls the voting for
supported markets as well as the issuance of additional rewards via Comptroller. While reviewing the
rewards-related logic, we notice the current implementation needs to be improved.

To elaborate, we show below the setTotalEmissions() function in VoteController. It implements
a simplistic logic in allowing for setting the emission rate of the protocol token 0VIX. However, it
does not immediately apply the new setting to the active markets. In other words, there is a need to
invoke updateRewards() to adjust the dissemination speed via Comptroller.

640 function setTotalEmissions(uint256 _totalEmissions) external onlyAdmin {
641 uint256 oldEmissions = totalEmissions;
642 totalEmissions = _totalEmissions;
643
644 emit TotalEmissionsChanged(oldEmissions , totalEmissions);
645 }

Listing 3.1: VoteController::setTotalEmissions

Recommendation Revise the above setTotalEmissions() function to timely apply the new
emissions setting.

Status The issue has been confirmed. And the team clarifies that "Since the current reward
speeds are voted by the users, we don’t want to update the rewards immediately after setting a new

11/25 PeckShield Audit Report #: 2022-148

Public

total emissions amount. The new amount of total emissions could have an impact on the users’ vote
behavior and that’s why we are updating the reward speeds only after voting in a periodic manner."

3.2 Improper Funding Source In VotingEscrow::_deposit_for()

• ID: PVE-002

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: VotingEscrow

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

The 0VIX protocol allows users to obtain the governance ve0VIX tokens by locking protocol tokens
0VIX. While reviewing the current locking logic, we notice the key helper routine _deposit_for()

needs to be revised.
To elaborate, we show below the implementation of this _deposit_for() helper routine. In fact,

it is an internal function to perform deposit and lock 0VIX for a user. This routine has a number
of arguments and the first one _addr is the address to receive the ve0VIX balance. It comes to our
attention that the _addr address is also the one to actually provide the assets, ERC20(self.token).

transferFrom(_addr, self, _value) (line 377). In fact, the msg.sender should be the one to provide
the assets for locking! Otherwise, this function may be abused to lock 0VIX tokens from users who
have approved the locking contract before without their notice.

350 @ i n t e r n a l
351 de f _depos i t_for (_addr : address , _value : uint256 , un lock_time : uint256 , l o cked_ba lance :

LockedBalance , type : int128) :
352 """
353 @notice Deposit and lock tokens for a user
354 @param _addr User’s wallet address
355 @param _value Amount to deposit
356 @param unlock_time New time when to unlock the tokens , or 0 if unchanged
357 @param locked_balance Previous locked amount / timestamp
358 """
359 _locked : LockedBalance = locked_ba lance
360 supp l y_be fo r e : uint256 = s e l f . s upp l y

362 s e l f . s upp l y = supp l y_be fo r e + _value
363 o ld_locked : LockedBalance = _locked
364 # Adding to e x i s t i n g lock , o r i f a l o c k i s e x p i r e d − c r e a t i n g a new one
365 _locked . amount += conv e r t (_value , int128)
366 i f unlock_time != 0 :
367 _locked . end = unlock_time
368 s e l f . l o c k ed [_addr] = _locked

12/25 PeckShield Audit Report #: 2022-148

Public

370 # P o s s i b i l i t i e s :
371 # Both o ld_locked . end cou ld be c u r r e n t or e x p i r e d (>/< block . timestamp)
372 # va lue == 0 (extend l o c k) or va lue > 0 (add to l o c k or ex tend l o c k)
373 # _locked . end > block . timestamp (a lways)
374 s e l f . _checkpo int (_addr , o ld_locked , _locked)

376 i f _value != 0 :
377 a s s e r t ERC20(s e l f . token) . t r a n s f e rF r om (_addr , s e l f , _value)

379 l o g Depos i t (_addr , _value , _locked . end , type , block . timestamp)
380 l o g Supp ly (supp ly_be fo re , supp l y_be fo r e + _value)

Listing 3.2: VotingEscrow::_deposit_for()

Recommendation Revise the above helper routine to use the right funding source to transfer
the assets for locking.

Status The issue has been fixed in the following commit: 82079c9.

3.3 Possible Front-Running For Unintended Payment

• ID: PVE-003

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: OToken

• Category: Time and State [9]

• CWE subcategory: CWE-663 [4]

Description

The 0VIX protocol is in essence an over-collateralized lending pool that has the lending functionality
and supports a number of normal lending functionalities for supplying and borrowing users, i.e.,
mint()/redeem() and borrow()/repay(). In the following, we examine one specific functionality, i.e.,
repay().

To elaborate, we show below the core routine repayBorrowFresh() that actually implements the
main logic behind the repay() routine. This routine allows for repaying partial or full current borrowing
balance. It is interesting to note that the 0VIX protocol supports the payment on behalf of another
borrowing user (via repayBorrowBehalf()). And the repayBorrowFresh() routine supports the corner
case when the given amount is larger than the current borrowing balance. In this corner case, the
protocol assumes the intention for a full repayment.

1379 function repayBorrowFresh(
1380 address payer ,
1381 address borrower ,
1382 uint256 repayAmount

13/25 PeckShield Audit Report #: 2022-148

https://github.com/0Vix/0vix-contracts/commit/82079c9

Public

1383) internal returns (uint256 , uint256) {
1384 /* Fail if repayBorrow not allowed */
1385 uint256 allowed = comptroller.repayBorrowAllowed(
1386 address(this),
1387 payer ,
1388 borrower ,
1389 repayAmount
1390);
1391 if (allowed != 0) {
1392 return (
1393 failOpaque(
1394 Error.COMPTROLLER_REJECTION ,
1395 FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION ,
1396 allowed
1397),
1398 0
1399);
1400 }

1402 /* Verify market ’s block timestamp equals current block timestamp */
1403 if (accrualBlockTimestamp != getBlockTimestamp ()) {
1404 return (
1405 fail(
1406 Error.MARKET_NOT_FRESH ,
1407 FailureInfo.REPAY_BORROW_FRESHNESS_CHECK
1408),
1409 0
1410);
1411 }

1413 RepayBorrowLocalVars memory vars;
1414 uint256 oldBorrowedBalance = borrowBalanceStored(borrower);

1416 /* We remember the original borrowerIndex for verification purposes */
1417 vars.borrowerIndex = accountBorrows[borrower]. interestIndex;

1419 /* We fetch the amount the borrower owes , with accumulated interest */
1420 (vars.mathErr , vars.accountBorrows) = borrowBalanceStoredInternal(
1421 borrower
1422);
1423 if (vars.mathErr != MathError.NO_ERROR) {
1424 return (
1425 failOpaque(
1426 Error.MATH_ERROR ,
1427 FailureInfo
1428 .REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED ,
1429 uint256(vars.mathErr)
1430),
1431 0
1432);
1433 }

14/25 PeckShield Audit Report #: 2022-148

Public

1435 /* If repayAmount == -1, repayAmount = accountBorrows */
1436 if (repayAmount == type(uint256).max) {
1437 vars.repayAmount = vars.accountBorrows;
1438 } else {
1439 vars.repayAmount = repayAmount;
1440 }
1441 ...
1442 }

Listing 3.3: OToken::repayBorrowFresh()

This is a reasonable assumption, but our analysis shows this assumption may be taken advantage
of to launch a front-running borrow() operation, resulting in a higher borrowing balance for repayment.
To avoid this situation, it is suggested to disallow the repayment amount of −1 to imply the full
repayment. In fact, it is always suggested to use the exact payment amount in the repayBorrowBehalf

() case.

Recommendation Revisit the generous assumption of using repayment amount of −1 as the
indication of full repayment.

Status The issue has been fixed in the following commit: 82079c9.

3.4 Improved Logic in
OToken::borrowFresh()/repayBorrowFresh()

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: OToken

• Category: Coding Practices [7]

• CWE subcategory: CWE-1126 [2]

Description

As mentioned in Section 3.3, the 0VIX protocol is in essence an over-collateralized lending pool that
has the lending functionality and supports a number of normal lending functionalities for supplying
and borrowing users. While reviewing the key logic behind the borrow and repayment, we notice the
current implementation may be improved.

Specifically, we show below the related _updateBoostBorrowBalances() helper function, which is
invoked in both borrow() and repay(). This helper function is designed to update the boost manager
on the update of the borrower’s balance. Also, notice this helper function takes three arguments:
user, oldBalance, and newBalance. It comes to our attention that both borrow() and repay() re-

15/25 PeckShield Audit Report #: 2022-148

https://github.com/0Vix/0vix-contracts/commit/82079c9

Public

calculate the newBalance by calling borrowBalanceStored(borrower). In fact, the re-calculation can be
avoided as the newBalance is readily available at the local variable accountBorrowsNew!

90 function _updateBoostBorrowBalances(
91 address user ,
92 uint256 oldBalance ,
93 uint256 newBalance
94) internal {
95 address boostManager = comptroller.getBoostManager ();
96 if (
97 boostManager != address (0) &&
98 IBoostManager(boostManager).isAuthorized(address(this))
99) {

100 IBoostManager(boostManager)
101 .updateBoostBorrowBalances(
102 address(this),
103 user ,
104 oldBalance ,
105 newBalance
106);
107 }
108 }

Listing 3.4: OToken::_updateBoostBorrowBalances()

Recommendation Avoid the unnecessary re-calculation of newBalance in both borrowFresh()

and repayBorrowFresh() functions.

Status The issue has been fixed in the following commit: 82079c9.

3.5 Non ERC20-Compliance Of OToken

• ID: PVE-005

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: OToken

• Category: Coding Practices [7]

• CWE subcategory: CWE-1126 [2]

Description

Each asset supported by the 0VIX protocol is integrated through a so-called OToken contract, which
is an ERC20 compliant representation of balances supplied to the protocol. By minting OTokens,
users can earn interest through the OToken’s exchange rate, which increases in value relative to the
underlying asset, and further gains the ability to use OToken as collateral. In the following, we examine
the ERC20 compliance of these OToken.

16/25 PeckShield Audit Report #: 2022-148

https://github.com/0Vix/0vix-contracts/commit/82079c9

Public

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

The ERC20 specification defines a list of API functions (and relevant events) that each token
contract is expected to implement (and emit). The failure to meet these requirements means the
token contract cannot be considered to be ERC20-compliant. Naturally, as part of our audit, we
examine the list of API functions defined by the ERC20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic of the
audited contract(s).

Our analysis shows that there are several ERC20 inconsistency or incompatibility issues found
in the OToken contract. Specifically, the current transfer() function simply returns the related error
code if the sender does not have sufficient balance to spend. A similar issue is also present in the
transferFrom() function that does not revert when the sender does not have the sufficient balance
or the message sender does not have the enough allowance.

In the surrounding two tables, we outline the respective list of basic view-only functions (Ta-
ble 3.1) and key state-changing functions (Table 3.2) according to the widely-adopted ERC20 spec-
ification. In addition, we perform a further examination on certain features that are permitted by
the ERC20 specification or even further extended in follow-up refinements and enhancements (e.g.,
ERC777/ERC2222), but not required for implementation. These features are generally helpful, but
may also impact or bring certain incompatibility with current DeFi protocols. Therefore, we consider
it is important to highlight them as well. This list is shown in Table 3.3.

17/25 PeckShield Audit Report #: 2022-148

Public

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer
status

✓

Reverts if the caller does not have enough tokens to spend ×
Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include
0 amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer
status

✓

Reverts if the spender does not have enough token allowances to spend ×
Updates the spender’s token allowances when tokens are transferred
successfully

✓

Reverts if the from address does not have enough tokens to spend ×
Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include
0 amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval
status

✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approval() event Is emitted on any successful call to approve() ✓

18/25 PeckShield Audit Report #: 2022-148

Public

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausable The token contract allows the owner or privileged users to pause the token
transfers and other operations

✓

Blacklistable The token contract allows the owner or privileged users to blacklist a
specific address such that token transfers and other operations related to
that address are prohibited

—

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

✓

Burnable The token contract allows the owner or privileged users to burn tokens of
a specific address

✓

Recommendation Revise the OToken implementation to ensure its ERC20-compliance.

Status The issue has been fixed in the following commit: 82079c9.

3.6 Proper Market Removal in VoteController

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: VoteController

• Category: Coding Practices [7]

• CWE subcategory: CWE-1126 [2]

Description

As mentioned in Section 3.1, the 0VIX tokenomics are supported by a core VoteController contract,
which controls the voting for supported markets as well as the issuance of additional rewards via
Comptroller. While reviewing the logic to add or remove a money market on demand, we notice the
current implementation can be improved.

In the following, we show the implementation of the removeMarket() function. As the name
indicates, this function is used to remove a market by making it non-votable. When a market
becomes non-votable, there is a need to clean up the remaining states. Our analysis shows that
the current implementation only marks the market as non-votable and removes it from the set of
the votable markets. However, there is another associated storage state timeWeight, which can be
removed as well, i.e., by adding the following statement: timeWeight[addr] = 0.

19/25 PeckShield Audit Report #: 2022-148

https://github.com/0Vix/0vix-contracts/commit/82079c9

Public

307 /**
308 * @notice Remove market ‘addr ‘ essentially making it non -votable; manual

fixedWeights recalibration needed
309 * @dev admin only
310 * @param addr Market address
311 */
312 function removeMarket(address addr) external onlyAdmin {
313 require(isVotable[addr], "Market doesn ’t exist");
314 isVotable[addr] = false;

316 markets.remove(addr);

318 // todo test what happens with market ’s lists (e.g. timeWeight[addr]) when re -
adding

320 emit MarketRemoved(addr);
321 }

Listing 3.5: VoteController::removeMarket()

Recommendation When a market is marked as non-votable, revise the above removeMarket()

logic to remove the associated states.

Status The issue has been fixed in the following commit: 82079c9.

3.7 Interface Inconsistency Between OMatic And OErc20

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [7]

• CWE subcategory: CWE-1041 [1]

Description

As mentioned in Section 3.5, each asset supported by the 0VIX protocol is integrated through a
so-called OToken contract, which is an ERC20 compliant representation of balances supplied to the
protocol. And OTokens are the primary means of interacting with the 0VIX protocol when a user wants
to mint(), redeem(), borrow(), repay(), liquidate(), or transfer(). Moreover, there are currently
two types of OTokens: OErc20 and OMatic. Both types expose the ERC20 interface and they wrap an
underlying ERC20 asset and Matic, respectively.

While examining these two types, we notice their interfaces are surprisingly different. Using the
replayBorrow() function as an example, the OErc20 type returns an error code while the OMatic type

20/25 PeckShield Audit Report #: 2022-148

https://github.com/0Vix/0vix-contracts/commit/82079c9

Public

simply reverts upon any failure. The similar inconsistency is also present in other routines, including
repayBorrowBehalf(), mint(), and liquidateBorrow().

99 function repayBorrow(uint256 repayAmount) external override returns (uint256) {
100 (uint256 err ,) = repayBorrowInternal(repayAmount);
101 return err;
102 }

Listing 3.6: OErc20::repayBorrow()

96 function repayBorrow () external payable {
97 (uint256 err ,) = repayBorrowInternal(msg.value);
98 requireNoError(err , "repayBorrow failed");
99 }

Listing 3.7: OMatic::repayBorrow()

Recommendation Ensure the consistency between these two types: OErc20 and OMatic.

Status The issue has been fixed in the following commit: 82079c9.

3.8 Trust Issue of Admin Keys

• ID: PVE-008

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [6]

• CWE subcategory: CWE-287 [3]

Description

In the 0VIX protocol, there is a privileged admin account that plays a critical role in governing and
regulating the system-wide operations (e.g., parameter setting and marketing adjustment). It also has
the privilege to control or govern the flow of assets managed by this protocol. Our analysis shows that
the privileged account needs to be scrutinized. In the following, we examine the privileged account
and their related privileged accesses in current contracts.

1889 function setVixAddress(address newVixAddress) public onlyAdmin {
1890 vixAddress = newVixAddress;
1891 }
1892
1893 function setBoostManager(address newBoostManager) public onlyAdmin {
1894 boostManager = IBoostManager(newBoostManager);
1895 }
1896
1897 function setRewardUpdater(address _rewardUpdater) public onlyAdmin {
1898 rewardUpdater = _rewardUpdater;

21/25 PeckShield Audit Report #: 2022-148

https://github.com/0Vix/0vix-contracts/commit/82079c9

Public

1899 emit RewardUpdaterModified(_rewardUpdater);
1900 }
1901
1902 function setAutoCollaterize(address market , bool flag) external onlyAdmin {
1903 markets[market]. autoCollaterize = flag;
1904 emit MarketAutoCollateralized(flag);
1905 }

Listing 3.8: Example Setters in the Comptroller Contract

Apparently, if the privileged admin account is a plain EOA account, this may be worrisome and
pose counter-party risk to the exchange users. Note that a multi-sig account could greatly alleviate
this concern, though it is still far from perfect. Specifically, a better approach is to eliminate the
administration key concern by transferring the role to a community-governed DAO. In the meantime,
a timelock-based mechanism can also be considered as mitigation.

Moreover, it should be noted that current contracts have the support of being deployed behind
a proxy. And there is a need to properly manage the proxy-admin privileges as they fall in this trust
issue as well.

7 contract TransparentUpgradeableProxyImpl is TransparentUpgradeableProxy {
8 constructor(
9 address _logic ,

10 address _admin ,
11 bytes memory _data
12) public payable TransparentUpgradeableProxy(_logic , _admin , _data) {}
13 }

Listing 3.9: TransparentUpgradeableProxyImpl::constructor()

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed with the team. For the time being, the team has
confirmed that these privileged functions should be called by a trusted multi-sig account, not a plain
EOA account.

22/25 PeckShield Audit Report #: 2022-148

Public

4 | Conclusion

In this audit, we have analyzed the 0VIX design and implementation. The protocol design is architected
and inspired based on Compound, which allows users to utilize their cryptocurrencies by supplying
collateral to the protocol that may be borrowed by staking over-collateralized cryptocurrencies. It
also provides novel solutions to retaining liquidity, ensuring the health of the protocol and to foster
the growth of the Polygon ecosystem. The current code base is well structured and neatly organized.
Those identified issues are promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

23/25 PeckShield Audit Report #: 2022-148

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[8] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[9] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

24/25 PeckShield Audit Report #: 2022-148

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html

Public

[10] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[11] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[12] PeckShield. PeckShield Inc. https://www.peckshield.com.

25/25 PeckShield Audit Report #: 2022-148

https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About 0VIX
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Timely Reward Update Upon totalEmissions Change
	Improper Funding Source In VotingEscrow::_deposit_for()
	Possible Front-Running For Unintended Payment
	Improved Logic in OToken::borrowFresh()/repayBorrowFresh()
	Non ERC20-Compliance Of OToken
	Proper Market Removal in VoteController
	Interface Inconsistency Between OMatic And OErc20
	Trust Issue of Admin Keys

	Conclusion
	References

