
0VIX Protocol Audit

0VIX Protocol Audit
May 09, 2022

0VIX Protocol Audit

1

24Disclaimer

23Appendix

4

5-8

9-10

11-12

13

14

15-16

17

18-20

21-22

Issues

VX-H1: Wrong values for PriceData when updating prices[oToken]rwater

VX-H2: Actual total boosted rewards can be higher than expected

VX-H3: OvixChainlinkOracle.sol network congestion may disrupt price feeds

VX-M4: Improper handling of stale self-updated price

VX-M5: OvixChainlinkOracle.sol#getPrice() Incompatible with some tokens

VX-M6: Use of deprecated Chainlink function latestAnswer

VX-M7: Wrong implementation makes the emission rate 2x the expected value

VX-L8: symbol() should not be used as the identity of the token

VX-L9: Shadowing variables

VX-L10: distributeSupplierReward() can be disrupted by marketInitialIndex update

3Overview

Summary 2

Table of Contents

0VIX Protocol Audit

2

Summary

This report has been prepared for 0VIX Protocol smart contracts, to discover issues
and vulnerabilities in the source code of their Smart Contract as well as any contract
dependencies that were not part of an officially recognized library. A comprehensive
examination has been performed, utilizing Static Analysis and Manual Review
techniques.

The auditing process pays special attention to the following considerations�

� Testing the smart contracts against both common and uncommon attack vectors�
� Assessing the codebase to ensure compliance with current best practices and

industry standards�
� Ensuring contract logic meets the specifications and intentions of the client�
� Cross referencing contract structure and implementation against similar smart

contracts produced by industry leaders�
� Thorough line-by-line manual review of the entire codebase by industry experts.

0VIX Protocol Audit

3

Project Summary

Audit Summary

Project Name 0VIX Protocol

Codebase https://github.com/0Vix/0vix-protocol

Commit f6c28b110878e068f8a24d9e122194503ff0b070

Language Solidity

Platform Polygon

Delivery Date May 09, 2022

Audit Methodology Static Analysis, Manual Review

Total Isssues 10

Overview

0VIX Protocol Audit

4

High

VX-H1: Wrong values for PriceData when updating prices[oToken]

In OvixChainlinkOracleV2.sol#setUnderlyingPrice(), prices[oToken] =
PriceData(underlyingPriceMantissa, updatedAt); should be prices[oToken] = PriceData(updatedAt,
underlyingPriceMantissa);.

function

>
if >

- <
else

- <
=

=

 (

 ,

 ,

) {

 (underlyingPriceMantissa ,);

 (block.timestamp updatedAt) {

 (block.timestamp updatedAt validPeriod,);

 } {

 (updatedAt block.timestamp ,);

 updatedAt block.timestamp;

 }

 emit (oToken, prices[oToken].price, underlyingPriceMantissa, updatedAt);

 prices[oToken] (underlyingPriceMantissa, updatedAt);

}

setUnderlyingPrice

external onlyAdmin

PricePosted
PriceData

address oToken
uint underlyingPriceMantissa
uint256 updatedAt

require 0

require

require 3

"bad price"

"bad updatedAt"

"bad updatedAt"

// reject stale price

// validPeriod can be set to 5 mins

// reject future timestamp (< 3s is allowed)

See the definition of struct PriceData:

chainlink/OvixChainlinkOracleV2.sol#L96-L114

struct {

 updatedAt;

 price;

}

PriceData
uint256
uint256

Fixed in commit: 26c0e21ede6b2acffa000616cec151ccccdf93ab.

Status

0VIX Protocol Audit

5

High

VX-H2: Actual total boosted rewards can be higher than expected

vote-escrow/BoostManager.sol#L205-L223

vote-escrow/BoostManager.sol#L57-L75

// marketType: 0 = supply, 1 = borrow

// boost basis = totalVeSupply/marketLiquidity

function

<=

if ==
if == return
return * /

else
if == return
return * /

 (,)

 ()

{

 (marketType ,);

 (marketType) {

 ((market). ()) ;

 ((veOVIX. ())

 (market). ());

 } {

 ((market). ()) ;

 ((veOVIX. ())
 (market). ());

 }

}

calcBoostBasis
internal

view

returns

IOToken totalSupply
totalSupply

IOToken totalSupply

IOToken totalBorrows
totalSupply

IOToken totalBorrows

address market uint256 marketType

uint256

require 1

0
0 0

MULTIPLIER

0 0
MULTIPLIER

"wrong market type"

/**

 * Updates the boost basis of the user with the latest veBalance

 * Address of the user which booster needs to be updated

 * The boolean value indicating whether the user still has the booster greater than 1.0

 */

@notice
@param
@return

function

=

=
for = < ++

return == ? :

user

 ()

 ()

{

 IOToken[] memory markets comptroller. ();

 veBalances[user] veOVIX. (user);

 (uint256 i ; i markets. ; i) {

 ((markets[i]), user);

 }

 veBalances[user] ;

}

updateBoostBasis
external

onlyAuthorized

returns

getAllMarkets

balanceOf

_updateBoostBasisPerMarket address

address user

bool

0 length

0 false true

0VIX Protocol Audit

6

Comptroller.sol#L1485-L1491

Comptroller.sol#L1571-L1612

function (

 ,

) {

 (oToken);

 (oToken, account);

}

updateAndDistributeSupplierRewardsForToken

public override
updateRewardSupplyIndex
distributeSupplierReward

address oToken
address account

function

=
=

=

=

if == && >=
=

=
-

= ==
?
:

if !=

=

= +
=

 (,)

{

 MarketState storage supState supplyState[oToken];

 uint256 supplyIndex supState.index;

 uint256 supplierIndex rewardSupplierIndex[oToken][supplier];

 rewardSupplierIndex[oToken][supplier] supplyIndex;

 (supplierIndex supplyIndex) {

 supplierIndex supplyIndex;

 }

 Double memory deltaIndex ({

 mantissa: supplyIndex supplierIndex

 });

 uint256 supplierTokens (boostManager) ()

 (oToken). (supplier)

 boostManager. (oToken, supplier);

 (supplyIndex supplierIndex) {

 uint256 supplierDelta (supplierTokens, deltaIndex);

 uint256 supplierAccrued rewardAccrued[supplier] supplierDelta;

 rewardAccrued[supplier] supplierAccrued;

 emit (

 (oToken),

 supplier,

 supplierDelta,

 supplyIndex

);

 }

}

distributeSupplierReward
internal

Double

address address
IOToken balanceOf

boostedSupplyBalanceOf

mul_

DistributedSupplierReward
IOToken

address oToken address supplier

// TODO: Don't distribute supplier Reward if the user is not in the supplier market.

// This check should be as gas efficient as possible as distributeSupplierReward is called in many places.

// - We really don't want to call an external contract as that's quite expensive.

// Update supplier's index to the current index since we are distributing accrued VIX

// Calculate change in the cumulative sum of the Reward per oToken accrued

// Calculate Reward accrued: oTokenAmount * accruedPerOToken

0 0

0

0VIX Protocol Audit

7

Given the ever decreasing nature of veToken, the totalSupply, veBalances, and other derived
concepts such as boostManager.boostedTotalSupply will most certainly be inaccurate at any given
time.

A sophisticated attacker or a malicious user can take advantage of this and take a larger portion of
the rewards. And the actual emission can be higher than expected.

Case A (the normal case):

When�

� (after state1�
� comptroller.claimRewards([account1.address, account2.address, account3.address],

[oMatic.address], true, true)

Then:

PoC

Given�

� oMatic's supply RewardSpeeds: 1e18 wei / se�
� account1: mint for 500e8 oMatic with 10e18 mati�
� account2: mint for 500e8 oMatic with 10e18 mati�
� account3: mint for 500e8 oMatic with 10e18 matic

And�

� account1: lock 10 0VIX, 1y�
� account2: lock 10 0VIX, 1yr

// account1 booster 2.5

// account2 booster 2.5

// account3 booster 1

� await increaseTime(WEEK);

(state1)

0VIX Protocol Audit

8

Case B (more emission than expected):

When�

� (after state1�
� await comptroller.updateAndDistributeSupplierRewardsForToken(oMatic.address,

owner.address); // update market RewardSupplyInde�
� account3: lock 100 0VIX, 1y�
� await voteController.connect(account3).voteForMarketWeights(oMatic.address, 10000); //

account3 boostManager.updateBoostBasis(), account3 booster 1 -> 2.�
� comptroller.claimRewards([account1.address, account2.address, account3.address],

[oMatic.address], true, true)

Then�

� account1 received supply reward: 25200379166666666666666�
� account2 received supply reward: 25200379166666666666666�
� account3 received supply reward: 25200379166666666666666�
� 252003791666666666666666 + 252003791666666666666666 + 252003791666666666666666 =

756011374999999999999998 ≈ WEEK * 1e18 + 150000 * 1e18

In this case, the total emission exceeded the expected total emission by 150000 * 1e18.

Fixed in commit: a967163ce198b9db5ff3a76d77c27494e3e8c358.

Status

� account1 received supply reward: 25200245833333333333333�
� account2 received supply reward: 25200245833333333333333�
� account3 received supply reward: 10080098333333333333333�
� 252002458333333333333333 + 252002458333333333333333 + 100800983333333333333333 =

604805899999999999999999 ≈ WEEK * 1e18

0VIX Protocol Audit

9

High

VX-H3: OvixChainlinkOracle network congestion may disrupt price feeds

The implementation only takes two parameters: the token and the price. The time of the price is
not included.

This makes it possible for the price feeds to be disrupted when the network is congested and
transactions with stale prices get accepted as fresh prices.

Since the price feeds are essential to the protocol, that can result in users' positions being
liquidated wrongfully and case fund loss to users.

PoC

Given:

�

� admin of OvixChainlinkOracle.sol is connected to an RPC endpoint currently experiencing
degraded performance�

� Bitcoin price is $100,000�
� The collateralFactor of Bitcoin is 60%.

�

�� Alice borrowed 50,000 USDC with 1 BTC as collateral�
�� Bitcoin price dropped to $90,000, to avoid liquidation, Alice repaid 10,000 USD�
�� The price of Bitcoin dropped to $80,000; admin of OvixChainlinkOracle.sol tries to
setDirectPrice() with the latest price: $80,000, however, since the network is congested, the
transaction was not get mined timely�

�� Bitcoin price rebound to $100,000; Alice borrowed another 10,000 USDC�
�� The tx send by admin at step 3 finally got mined, the protocol now believes the price of Bitcoin
has suddenly dropped to $80,000, as a result, Alice's position got liquidated.

function
=

=

function

=

 (,) {

 address asset (((oToken)). ());

 emit (asset, prices[asset], underlyingPriceMantissa, underlyingPriceMantissa);

 prices[asset] underlyingPriceMantissa;

}

 (,) {

 emit (asset, prices[asset], price, price);

 prices[asset] price;

}

setUnderlyingPrice external onlyAdmin
address OErc20 address underlying

PricePosted

setDirectPrice external onlyAdmin
PricePosted

IOToken oToken uint underlyingPriceMantissa

address asset uint price

chainlink/OvixChainlinkOracle.sol#L64-L73

0VIX Protocol Audit

10

Recommendation

Change to:

function
>

if >

- <
else

- <
=

=

 (, ,) {

 (_price ,);

 (block.timestamp _updatedAt) {

 (block.timestamp _updatedAt validPeriod,);

 } {

 (_updatedAt block.timestamp ,);

 _updatedAt block.timestamp;

 }

 emit (_asset, prices[_asset].prce, _price, _price);

 prices[_asset] ({

 price: . (_price),

 updatedAt: . (_updatedAt)

 });

}

setDirectPrice external onlyAdmin

PricePosted

PriceData
safe216

safe32

address _asset uint _price uint _updatedAt
require 0

require

require 3

Math
Math

"bad price"

"bad updatedAt"

"bad updatedAt"

// reject stale price

// validPeriod can be set to 5 mins

// reject future timestamp (< 3s is allowed)

Fixed in commit: a1f9579938cb211e75dd5727054d7c5782396d6a.

Status

0VIX Protocol Audit

11

Medium

VX-M4: Improper handling of stale self-updated price

chainlink/OvixChainlinkOracleV2.sol#L55-L71

In getPrice(), when a self-updated price exists, it should check the updated time of the price and
see if it's stale before using it.

Also, consider using Chainlink's feed first if possible.

function
=

if !=
=

else
=

=

if >
return **

else
return

 () () {

 token (((oToken)). ());

 (prices[(oToken)].price) {

 price prices[(oToken)].price;

 } {

 price (((oToken)));

 }

 uint decimalDelta (). ((token. ()));

 (decimalDelta) {

 price. (decimalDelta);

 } {

 price;

 }

}

getPrice internal view returns
IEIP20 OErc20 address underlying

address
address

getChainlinkPrice getFeed address

uint sub uint decimals

mul

IOToken oToken uint price
IEIP20

0

18

0
10

// Ensure that we don't multiply the result by 0

0VIX Protocol Audit

12

function
=

=
if

=
else if >= -

=

>

=

if >
return **

else
return

 () () {

 token (((oToken)). ());

 IAggregatorV2V3 feed ((oToken));

 (feed) {

 price (feed);

 } (prices[(oToken)].updatedAt block.timestamp validPeriod) {

 price prices[(oToken)].price;

 }

 (price ,);

 uint decimalDelta (). ((token. ()));

 (decimalDelta) {

 price. (decimalDelta);

 } {

 price;

 }

}

getPrice internal view returns
IEIP20 OErc20 address underlying

getFeed address

getChainlinkPrice
address

address

uint sub uint decimals

mul

IOToken oToken uint price
IEIP20

require 0

18

0
10

"bad price"

// Ensure that we don't multiply the result by 0

Recommendation

Change to:

Fixed in commit: 5b5b3c69ce97b01e8e8048e609a217a51a2d4903.

Status

0VIX Protocol Audit

13

Medium

VX-M5: OvixChainlinkOracle.sol#getPrice() Incompatible with some tokens

Some ERC20 tokens, for example MakerDAO's MKR token, is not using string for token name and
symbol.

As a result, IEIP20().symbol() will revert.

Furthurmore, symbol() is not reliable to be the identity of the token.

chainlink/OvixChainlinkOracle.sol#L35-L51

function
=

if !=
=

else
=

=

if >
return **

else
return

 () () {

 token (((oToken)). ());

 (prices[(token)]) {

 price prices[(token)];

 } {

 price ((token. ()));

 }

 uint decimalDelta (). ((token. ()));

 (decimalDelta) {

 price. (decimalDelta);

 } {

 price;

 }

 }

getPrice internal view returns
IEIP20 OErc20 address underlying

address
address

getChainlinkPrice getFeed symbol

uint sub uint decimals

mul

IOToken oToken uint price
IEIP20

0

18

0
10

// Ensure that we don't multiply the result by 0

Fixed in commit: a1f9579938cb211e75dd5727054d7c5782396d6a.

Status

0VIX Protocol Audit

14

Medium

VX-M6: Use of deprecated Chainlink function latestAnswer

Recommendation

Use the latestRoundData method instead.

See: https://docs.chain.link/docs/historical-price-data/#solidity

chainlink/OvixChainlinkOracle.sol#L53-L62

According to Chainlink's documentation, the latestAnswer function is deprecated. This function
does not error if no answer has been reached but returns 0, causing an incorrect price fed to
OvixChainlinkOracle.

function

=

if >
return **

else
return

 () () {

 uint decimalDelta (). (feed. ());

 (decimalDelta) {

 (feed. ()). (decimalDelta);

 } {

 (feed. ());

 }

}

getChainlinkPrice internal view returns

uint sub decimals

uint latestAnswer mul

uint latestAnswer

IAggregatorV2V3 feed uint
// Chainlink USD-denominated feeds store answers at 8 decimals

// Ensure that we don't multiply the result by 0

18

0

10

Fixed in commit: a1f9579938cb211e75dd5727054d7c5782396d6a.

Status

0VIX Protocol Audit

15

Medium

VX-M7: Wrong implementation makes the emission rate 2x than expected

The totalEmissions usually represent the total emission rate, and it will be distributed among the
markets according to a certain set of rules.

However, in the current implementation, after the reward for a specific market is calculated, both
the supply and borrow side will get the 100% of the reward, making each market get 2x the reward
they are expected to get.

As a result, the actual total emission rate is 2x the totalEmissions.

vote-escrow/VoteController.sol#L664-L699

function

>=

= + / *
= * /

= -

for = < ++

=
=

= *

/ +

* /

= new
=

= new
=

= ==
?
: +

 () {

 (

 block.timestamp nextTimeRewardsUpdated,

);

 ();

 nextTimeRewardsUpdated ((block.timestamp)) ;

 uint256 votableAmount (totalEmissions votablePercentage)
 ;

 uint256 fixedAmount totalEmissions votableAmount;

 (uint256 i ; i markets. (); i) {

 address addr markets. (i);

 uint256 relWeight (addr, block.timestamp);

 uint256 reward ((fixedAmount
 fixedRewardWeights[markets. (i)]))
 ((votableAmount relWeight));

 address[] memory addrs address[]();

 addrs[] addr;

 uint256[] memory rewards uint256[]();

 rewards[] reward;

 comp. (addrs, rewards, rewards);

 updates. ((addr, reward, block.timestamp));

 emit (addr, reward, reward, fixedRewardWeights[markets. (i)], relWeight);

 }

 shiftingEpoch shiftingEpoch Epoch.
 Epoch.
 ((shiftingEpoch));

}

updateRewards public

checkpointAll

length

at
_marketRelativeWeight

at

_setRewardSpeeds
push Updated

RewardsUpdated at

Epoch uint256

require

PERIOD PERIOD PERIOD

HUNDRED_PERCENT

0

HUNDRED_PERCENT
1e18

1
0

1
0

THIRD

FIRST

1

"rewards already updated"

// todo: check if all markets have (fixed-)weights

// current implementation doesn't differentiate supply and borrow reward speeds

// shift the epoch so the booster of the needed users can be decreased

0VIX Protocol Audit

16

Recommendation

The simpliest fix is change to:

A more complete and flexible resolution is, to have another storage mapping called
marketSupplySideBPS:

comp. (addrs, rewards , rewards);_setRewardSpeeds / /2 2

// marketAddr -> supplySideBPS

mapping(uint256) public marketSupplySideBPS;address =>

uint256 reward ((fixedAmount
 fixedRewardWeights[markets. (i)]))
 ((votableAmount relWeight));

uint supplySideRewards reward marketSupplySideBPS[addr] ;

comp. (addrs, [supplySideRewards], [reward supplySideRewards]);

= *

/ +

* /

= * /
-

at

_setRewardSpeeds

HUNDRED_PERCENT
1e18

MAX_BPS

Fixed in commit: 25c95c3704b2a9043768873d6a1cb7e4f751d048.

Status

0VIX Protocol Audit

17

Low

VX-L8: symbol() should not be used as the identity of the token

ERC20's symbol() is a optional method, and there are plenty of tokens using the same symbol.

Using the symbol() as the identity can potentially disrupt the price feed in the case that we added a
second token with the same symbol into the system.

chainlink/OvixChainlinkOracle.sol#L75-L83

chainlink/OvixChainlinkOracle.sol#L35-L51

function
!= && !=

=

function
return

 (,) {

 (feed () feed (),);

 emit (feed, symbol);

 feeds[(abi. (symbol))] (feed);

}

 () () {

 feeds[(abi. (symbol))];

}

setFeed external onlyAdmin
address address

FeedSet
keccak256 encodePacked IAggregatorV2V3

getFeed public view returns
keccak256 encodePacked

string calldata symbol address feed

string memory symbol IAggregatorV2V3

require 0 this "invalid feed address"

function
=

if !=
=

else
=

=

if >
return **

else
return

 () () {

 token (((oToken)). ());

 (prices[(token)]) {

 price prices[(token)];

 } {

 price ((token. ()));

 }

 uint decimalDelta (). ((token. ()));

 (decimalDelta) {

 price. (decimalDelta);

 } {

 price;

 }

 }

getPrice internal view returns
IEIP20 OErc20 address underlying

address
address

getChainlinkPrice getFeed symbol

uint sub uint decimals

mul

IOToken oToken uint price
IEIP20

0

18

0
10

// Ensure that we don't multiply the result by 0

Fixed in commit: 5b5b3c69ce97b01e8e8048e609a217a51a2d4903.

Status

0VIX Protocol Audit

18

Low

VX-L9: Shadowing variables

supplyState and borrowState are shadowing local variables.

Comptroller.sol#L1273-L1296

Comptroller.sol#L1535-L1560

function
=

=
=

if ==

=

if ==

=

= =

 () {

 uint32 timestamp (());

 MarketState storage supplyState supplyState[oToken];

 MarketState storage borrowState borrowState[oToken];

 (supplyState.index) {

 supplyState.index marketInitialIndex;

 }

 (borrowState.index) {

 borrowState.index marketInitialIndex;

 }

 supplyState.timestamp borrowState.timestamp timestamp;

}

_initializeMarket internal
safe32 getTimestamp

address oToken

/*

 * Update market state indices

 */

// Initialize supply state index with default value

// Initialize borrow state index with default value

/*

 * Update market state timestamps

 */

0

0

0VIX Protocol Audit

19

function

=
=

=
= -

if >
if >

=
== ? :

= *
= >

?
:

=

=

 (

 ,

) {

 MarketState storage borrowState borrowState[oToken];

 uint256 borrowSpeed rewardBorrowSpeeds[oToken];

 uint32 timestamp (());

 uint256 deltaBlocks (timestamp)
 (borrowState.timestamp);

 (deltaBlocks) {

 (borrowSpeed) {

 uint256 borrowAmount (

 (boostManager) () (oToken). ()
boostManager. (oToken),

 marketBorrowIndex

);

 uint256 rewardAccrued deltaBlocks borrowSpeed;

 Double memory ratio borrowAmount
 (rewardAccrued, borrowAmount)

 ({mantissa: });

 borrowState.index (

 (({mantissa: borrowState.index}), ratio).mantissa

);

 }

 borrowState.timestamp timestamp;

 }

}

updateRewardBorrowIndex

internal

safe32 getTimestamp
uint256

uint256

div_
address address IOToken totalBorrows

boostedTotalBorrows

fraction
Double

safe224
add_ Double

address oToken
Exp memory marketBorrowIndex

0
0

0

0

0

borrowState is shadowing local variables.

Comptroller.sol#L1567-L1580

function

=
=

=

=
...

 (,)

{

 MarketState storage supplyState supplyState[oToken];

 uint256 supplyIndex supplyState.index;

 uint256 supplierIndex rewardSupplierIndex[oToken][supplier];

 rewardSupplierIndex[oToken][supplier] supplyIndex;

distributeSupplierReward
internal

address oToken address supplier

// TODO: Don't distribute supplier Reward if the user is not in the supplier market.

// This check should be as gas efficient as possible as distributeSupplierReward is called in many places.

// - We really don't want to call an external contract as that's quite expensive.

// Update supplier's index to the current index since we are distributing accrued VIX

supplyState is shadowing local variables.

Comptroller.sol#L1618-L1632

0VIX Protocol Audit

20

function

=
=

=

=
...

 (

 ,

 ,

) {

 MarketState storage borrowState borrowState[oToken];

 uint256 borrowIndex borrowState.index;

 uint256 borrowerIndex rewardBorrowerIndex[oToken][borrower];

 rewardBorrowerIndex[oToken][borrower] borrowIndex;

distributeBorrowerReward

internal

address oToken
address borrower
Exp memory marketBorrowIndex

// TODO: Don't distribute supplier Reward if the user is not in the borrower market.

// This check should be as gas efficient as possible as distributeBorrowerReward is called in many places.

// - We really don't want to call an external contract as that's quite expensive.

// Update borrowers's index to the current index since we are distributing accrued VIX

borrowState is shadowing local variables.

Shadowing local variables is naming conventions found in two or more variables that are similar.
Although they do not pose any immediate risk to the contract, incorrect usage of the variables is
possible and can cause serious issues if the developer does not pay close attention.

Fixed in commit: df0d1e5a05d31d7450bb231dfd4813abe484483e.

Status

0VIX Protocol Audit

21

Low

VX-L10: distributeSupplierReward() can be disrupted by
marketInitialIndex update

if (supplierIndex == 0 && supplyIndex >= marketInitialIndex) { was if (supplierIndex == 0 &&
supplyIndex >= 0) { in the original Compound code.

We are not sure why the code is changed, but for the current implementation, once
marketInitialIndex is updated to a higher value in a future version, distributeSupplierReward() can
be disrupted:

In that case, supplierIndex won't be set to marketInitialIndex at L1585. As a result, supplyIndex -
supplierIndex == supplyIndex - 0 == supplyIndex.

The supplier will receive a much larger amount of rewards as expected.

The same issue also exists on distributeBorrowerReward().

Comptroller.sol#L1566-L1586

function

=
=

=

=

if == && >=

=

=
-

 (,)

{

 MarketState storage supplyState supplyState[oToken];

 uint256 supplyIndex supplyState.index;

 uint256 supplierIndex rewardSupplierIndex[oToken][supplier];

 rewardSupplierIndex[oToken][supplier] supplyIndex;

 (supplierIndex supplyIndex marketInitialIndex) {

 supplierIndex marketInitialIndex;

 }

 Double memory deltaIndex ({

 mantissa: supplyIndex supplierIndex

 });

distributeSupplierReward
internal

Double

address oToken address supplier

// TODO: Don't distribute supplier Reward if the user is not in the supplier market.

// This check should be as gas efficient as possible as distributeSupplierReward is called in many places.

// - We really don't want to call an external contract as that's quite expensive.

// Update supplier's index to the current index since we are distributing accrued VIX

// Covers the case where users supplied tokens before the market's supply state index was set.

// Rewards the user with Reward accrued from the start of when supplier rewards were first

// set for the market.

// Calculate change in the cumulative sum of the Reward per oToken accrued

0

0VIX Protocol Audit

22

Recommendation

Change to:

if (supplierIndex == 0 || supplierIndex >= supplyIndex) return;

Fixed in commit: 042ab4658c8b07f1b19881502a62efaf300be131.

Status

0VIX Protocol Audit

23

The content contained in the report is current as of the date appearing on the report
and is subject to change without notice, unless indicated otherwise by WatchPug;
however, WatchPug does not guarantee or warrant the accuracy, timeliness, or
completeness of any report you access using the internet or other means, and
assumes no obligation to update any information following publication.

Appendix

Timeliness of content

0VIX Protocol Audit

24

This report is based on the scope of materials and documentation provided for a
limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and
as-available basis. You agree that your access and/or use, including but not limited to
any associated services, products, protocols, platforms, content, and materials, will
be at your sole risk. Smart Contract technology remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer,
or any other areas beyond the programming language, or other programming aspects
that could present security risks. A report does not indicate the endorsement of any
particular project or team, nor guarantee its security. No third party should rely on
the reports in any way, including for the purpose of making any decisions to buy or
sell a product, service or any other asset. To the fullest extent permitted by law, we
disclaim all warranties, expressed or implied, in connection with this report, its
content, and the related services and products and your use thereof, including,
without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume
responsibility for any product or service advertised or offered by a third party
through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the
report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be
a party to or in any way be responsible for monitoring any transaction between you
and any third-party providers of products or services. As with the purchase or use of a
product or service through any medium or in any environment, you should use your
best judgment and exercise caution where appropriate. FOR AVOIDANCE OF DOUBT,
THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY
ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR
OTHER ADVICE.

Disclaimer

