

SPR206: Next Generation Polymyxin for the Treatment of Highly Resistant Gram-Negative Bacterial Infections

Troy Lister, PhD VP Research & Early Development

Disclosures

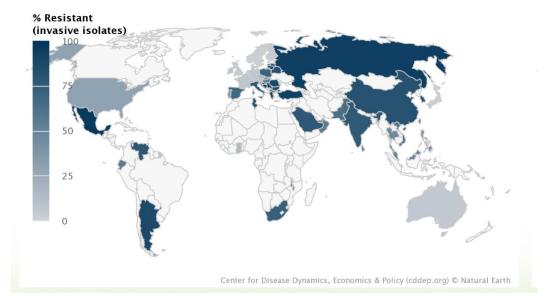
Dr. Lister is a full-time employee of Spero Therapeutics

Spero Therapeutics gratefully acknowledges the support of NIAID and DoD in advancing SPR206 into clinical development

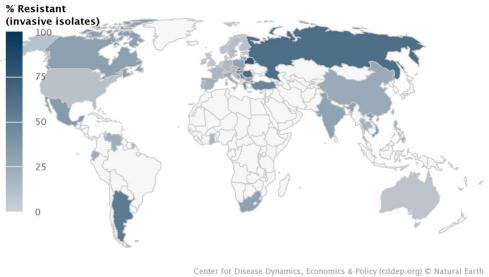
Contract No. HHSN272201500014C

SPR206 Poster Presentations at ASM Microbe 2019

Friday, June 21st, 11:00 am - 12:00 pm and 4:00 pm - 5:00 pm


- Optimization of Next-Generation Polymyxins Leading to SPR206 as a Development Candidate Poster 793
- Mechanism of Action of SPR206, a Next-Generation Polymyxin Active Against Gram-Negative Pathogens –
 Poster 794
- The Impact of Varied Test Conditions on the In Vitro Activity of SPR206, a Next-Generation Polymyxin B
 Analog, against Drug-susceptible and Multidrug-resistant Gram-negative Pathogens Poster 795
- Activity of Investigational Polymyxin-B-Like Compound (SPR206) against Set of *Enterobacteriaceae*Organisms Responsible for Human Infections Poster 796
- In Vitro Bactericidal Activity of Next-Generation Polymyxin SPR206 against Susceptible and Multidrug-Resistant (MDR) Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumonia as compared to Levofloxacin and Meropenem Poster 797
- In Vivo Efficacy of Next-Generation Polymyxin SPR206 in an Immunocompetent Murine Ascending UTI
 Infection Model Caused by Escherichia coli Poster 798
- In Vivo Efficacy of SPR206 in Murine Lung and Thigh Infection Models Caused by Multi-Drug Resistant
 Pathogens Pseudomonas aeruginosa and Acinetobacter baumannii Poster 799
- A GLP 14-Day Repeat Dose Toxicology Study of SPR206 in Monkeys Poster 800

SPR206: Why? There Remains Great Need for Better Tolerated Antibiotics for Problematic Gram-Negative Pathogens


Carbapenem-Resistant *Acinetobacter* in US exceeding 50%

Carbapenem-Resistant *Pseudomonas* in US reaching 20%

Resistance of *Acinetobacter baumannii* to Carbapenems

Resistance of *Pseudomonas aeruginosa* to Carbapenems

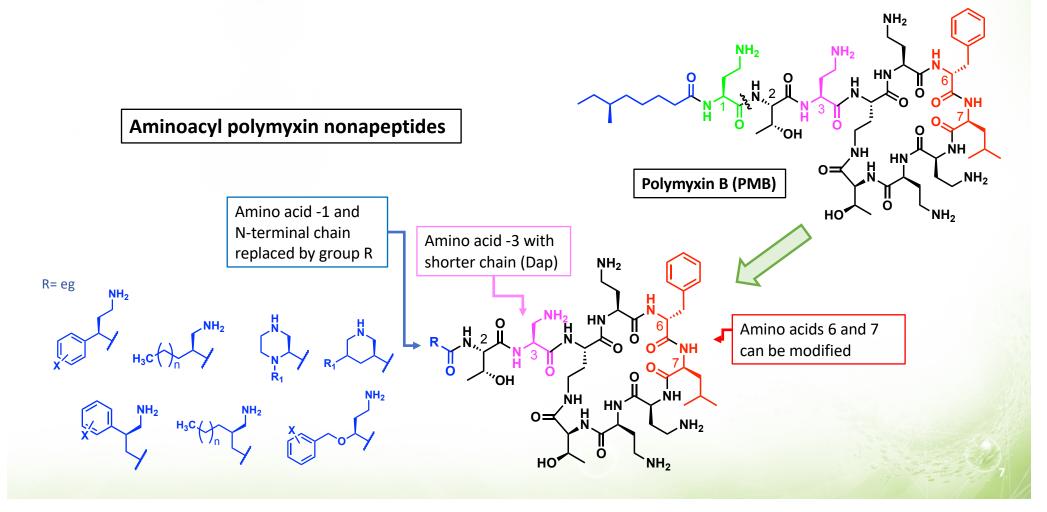
SPR206 Overview

Potent, Broad Spectrum Gram-Negative Activity

 Potent in vitro and in vivo activity across a wide variety of MDR Gram-negative bacteria, including serine-CRE, metallo-CRE, carbapenem-resistant P. aeruginosa, Acinetobacter spp.

Well Tolerated

 Pre-clinical safety profile supported progression into Phase 1


Clinical Stage Therapy

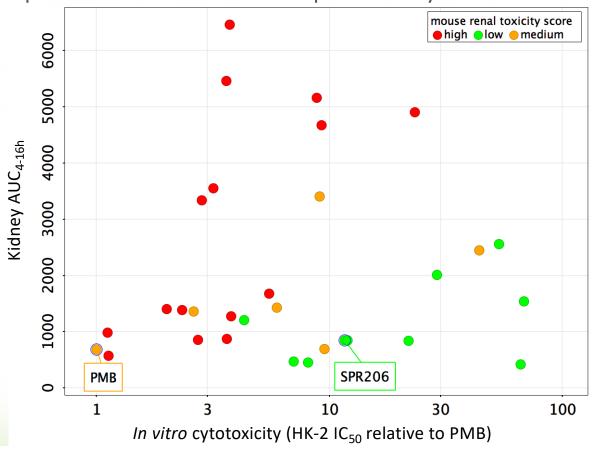
Phase 1 SAD/MAD trial ongoing

Well Positioned for Combination Therapy

• Replacement for aminoglycosides and original polymyxins

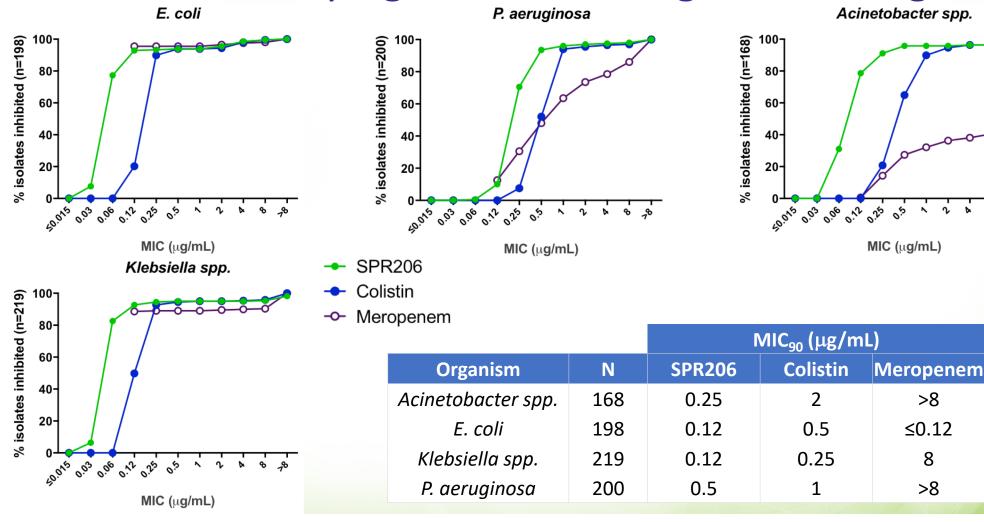
SPR206 Discovery Chemistry

SPR206 Structure Activity/Structure Toxicity Relationship

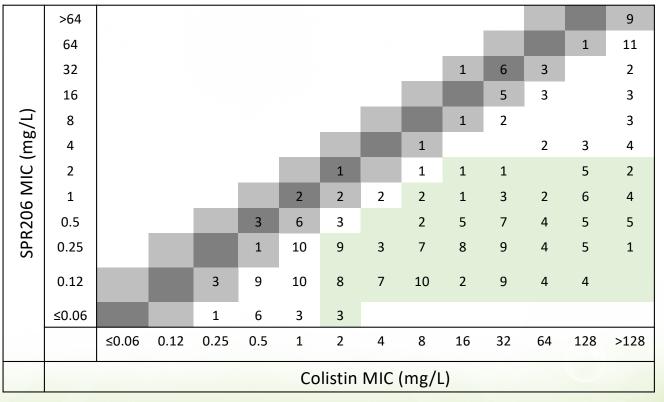

- Three pronged approach to understanding SAR/STR in lead optimization
- Triangulation of antibacterial activity, kidney cell cytotoxicity and kidney accumulation

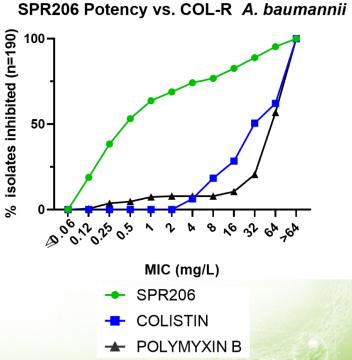
		MIC (relative to PMB)			Resistant			W. L	
Compound	cLogP	E. coli	K. pneumonia	P. aeruginosa	A. baumannii	Strains (relative to PMB)	HK-2 IC ₅₀ (relative to PMB)	4hr Kidney Level (μg/g)	Kidney AUC _{4-16hr} (μg*hr/g)
PMB	-6.3	0	0	0	0	0	1.0	128	688
SPR206	-6.3	1.5	0.8	0.8	1.7	-0.7	11.6	170	850
CA1338	-6.8	0.3	0.7	1.1	1.9	-1.0	>68	330	1,545
CA1405	-6.8	1.4	0.9	1.9	2.6	-0.6	8.1	110	453
CA1406	-7.8	0.1	0	0.1	-0.3	-1.9	>66	91	419
CA1408	-6.5	1.0	0.9	1.3	2.2	-0.5	21.8	203	841

- Antibacterial activity is based on MIC values and refers to average number of dilutions better than PMB when tested across 8 strains per species, or 15 strains of all four species with reduced susceptibility to polymyxins (resistant strains)
- 4hr kidney level and 4 16hr AUC were measured after a single 17.2 mg/kg dose to mice


SPR206 Structure Toxicity Relationship

• Relationship between intrinsic kidney cytotoxicity (HK-2 IC_{50}) and kidney levels of molecule are predictive *in vivo* murine nephrotoxicity


SPR206 Potency Against Gram-Negative Pathogens

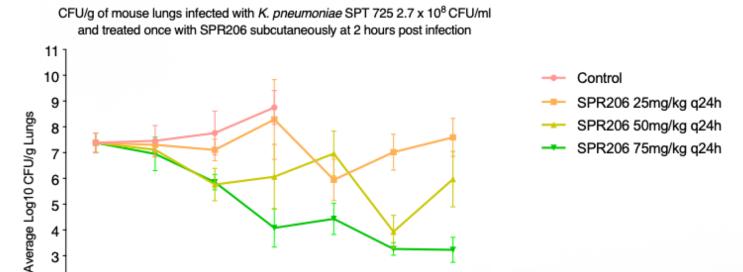

8

SPR206 Activity Against PMX Resistant A. baumannii

- Evaluation of larger collection of mostly COL^R A. baumannii uncovered differentiated activity profile for SPR206
- 148 of 190 have SPR206 MIC <2 mg/L, Colistin MIC >2 mg/L. All have >8-fold lower MIC for SPR206

SPR206 In Vivo Efficacy Summary

		Dose Required (mg/kg/dose; 3 d		
Infecting Organism/Site	Efficacy Endpoint	SPR206	РМВ	
	Stasis	0.71	0.40	
E. coli thigh (IV dosing)	-1 log	2.56	2.37	
(iv doshig)	-2 log	N/A	N/A	
	Stasis	0.37	0.35	
K. pneumonia thigh (IV dosing)	-1 log	0.43	0.42	
(iv desing)	-2 log	N/A	N/A	
	Stasis	0.42	0.33	
A. baumannii thigh (IV dosing)	-1 log	0.54	0.42	
(17 3031118)	-2 log	0.66	0.66	
	Stasis	14.5	N/A	
P. aeruginosa lung (SC dosing)	-1 log	N/A	N/A	
(36 46311.6)	-2 log	N/A	N/A	
A . h	Stasis	11.5	N/A	
A. baumannii lung (SC dosing)	-1 log	14.9	N/A	
(55 3536)	-2 log	19.1	N/A	


SPR206 Exhibits Persistent Efficacy in Lung Infection

• Immunocompromised K. pneumoniae murine lung infection model

0,

Time Post Infection (hours)

- Single dose of SPR206 2 h post infection
- Robust dose response, with persistent efficacy at all dose levels, despite rapid clearance from plasma

SPR206 Has Favorable Profile for Clinical Evaluation

 GLP 14 day repeat dose studies in monkey established near identical safety profile between SPR206 and SPR741

Species	NOAEL (mg/kg)	Cmax (µg/mL)	AUC (μg*hr/mL)
Rat	10	6.4	6.8
Monkey	30	47	345

Compound	Dose (mg/kg/day)	Cmax (μg/mL)	AUC ₍₀₋₂₄₎ (μg*hr/mL)	AUC/dose
SPR206	30	42	345	11.5
SPR741	40	47	363	9.1

- ✓ Non-genotoxic
- No inhibition or metabolism in ADME studies low risk for DDI. Very low PPB: human (10%), monkey (8%), rat (14%), mouse (20%)
- ✓ Clean in all safety pharmacology studies
- ✓ No hemolysis, flocculation or local irritation

Effic	cacy Target Expo	fAUC Margin		
Species	Efficacy Target (mg/kg)	fAUC (μg*hr/mL)	Rat	Monkey
Mouse	<50	<48	>0.12	>6

SPR206 Phase 1 SAD/MAD Study

A Two-part, Randomized, Double-blind, Placebo-controlled, Phase I Study of the Safety, Tolerability and Pharmacokinetics of SPR206 Following Administration of Single and Multiple Ascending IV Doses in Healthy Volunteers

- Objectives: Safety, Tolerability, PK, QT-monitoring
- Single Center (Scientia, Australia)
- Healthy volunteers, male and female (non-childbearing): 18-55 yo
- 8 Single Ascending Dose (SAD) Cohorts
- 4 Multiple Ascending Dose (MAD) Cohorts (14-days duration)
- 108 subjects (planned); 3:1 randomization

Acknowledgements

- Mike Dawson, Pam Brown, Cantab Team
- Nicole Cotroneo, Lisa Morelli, Evan Hecker, Nick Clayton, Tom Parr, Jon Bruss, David Melnick, Spero Team
- Michael Bleavins, University of Liverpool, ICPD, JMI, and collaborators