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Chapter 1

Abstract

The objective of this this master’s thesis is to propose a method to optimize the cost function re-
lated to the training phase of a Support Vector Machine (SVM) for regression. The novelty in the
optimization process that was developed in this study consists in the usage of Quantum Annealing
(QA) for the minimization of the cost function. The hardware used for the annealing process is the
D-wave Advantage system that was released in 2020. The implementation proposed in this work,
that will be referred to as Quantum Support Vector Regression (QSVR), was tested on simple test
cases of one variable functions in order to carry out a preliminary assessment on toy examples. The
functions considered in the experimental analysis were a sine function, a sinc function and a triangular
function. The number of training samples was kept low in each experiment beacuase the objective
was to study the model in simple cases. Moreover, the hyperparameters were chosen in such a way to
favor overfitting. In the optimization process the annealer provides different solutions and therefore
5 different methods to combine such solutions were proposed and then compared with the traditional
SVR as a reference in the experiments. One interesting fact that emerged during the experimentation
is that the different methods for combining the solutions performed very differently depending on the
function considered for the testing. This suggests that there is not a best method overall but it should
instead be chosen specifically based on the test case. Further research in the future will study the
generalization capabilities of the QSVR and will also consider more complex functions and test cases
for the training and the testing phase.
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Chapter 2

Introduction

Over the last years the field of machine learning (ML) has become of great importance in many di-
verse applicative fields such as medicine [21], economics [31] and agriculture [27]. Broadly speaking
the objective of ML is to build algorithms that are able to learn without being explicitly programmed
to do so [24], [19]. In this thesis the focus is on regression problems, that consist in determining the
relationship between one or more independent variables and one dependent variable. In particular, the
objective of this work is the study of Support Vector Machines (SVM) applied to regression. SVMs
are well-known supervised learning models that were introduced in the 1990s for the classification case
[6] and for the regression case [9]. The algorithm of Support Vector Machines for both classification
and regression requires the solving of a constrained optimization problem. In this work a method for
solving such problem for the regression case with the usage of QA is proposed. In a similar way as
was done in [29], for the sake of clarity, the original implementation of Support Vector Regression
(SVR) will be referred as classical or traditional SVR, whereas the proposed QA-based implementa-
tion will be referred as quantum SVR or QSVR. Quantum Annealing is a metaheuristic, i.e. a “general
algorithmic frameworks, often nature-inspired, designed to solve complex optimization” [3], used for
solving multivaribale optimization problems by exploiting quantum fluctations as a search strategy.
QA was first introduced in [2] and [10] and over the last years has established itself as an active field
of research and a powerful asset for machine learning problems [14]. In QA the problem is encoded
into the Hamiltonian of a quantum system and the physical model requires that such problem is a
Quadratic Unconstrained Optimization (QUBO) problem. In a QUBO problem therefore the variables
are binary and can take as value either 0 or 1 and can only be present in the equation as linear or
quadratic terms. The QUBO problems must be unconstrained, however, it is possible to modify the
target function in order to enforce the constraints in a implicit way. For example, in [29] this was done
by adding penalty terms to the cost function whose influence is regulated by some hyperparameters.
The quantum annealer returns different solutions, whose number is selected by the user, and in this
work were proposed different methods to efficiently combine the such candidate solutions to produce
the final solution. The hardware architecture that was used for the Quantum Annealing is the D-
wave Advantage systems, which was released in 2020 and has 5000 qubits, more than double than its
predecessor Dwave 2000Q. Moreover, the new Advantage system has a new hardware topology that
gives a greater connectivity for each physical qubit. In [30] was shown that Advantage was able to
outperform 2000Q in some computational tasks. Since QA requires that the problem is formulated
as a QUBO, the main challenge when dealing with QA-based machine learning models is often to
reformulate the optimization problem as a QUBO in an effective way [14]. In [12] QA was applied to
maximum likelihood estimation problems, experimental design and matrix inversion. One of the first
attempt to apply QA to machine learning was done in [20] in which the optimization of a classifier
based on an ensemble of perceptrons is carried out with QA. It has also been recently applied in
the context of Deep Learning: for instance, in [1] it was used for the optimization of a Deep Neural
Network. Some implementations of classification algorithms with QA have have already proven to be
able to outperform classical ones in some classification tasks related to computational biology [17].
In the context of SVM a method for solving the optimization problem for the classification case has
already been proposed in [7] and [29]. Regression techniques based on the implementation of linear
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CHAPTER 2. INTRODUCTION 5

regression with QA have already been proposed in [8] and [25], however, to the best of my knowledge,
a regression technique based on the implementation of Support Vector Regression with QA has yet to
be proposed.
Having at disposal an efficient and reliable QSVR algorithm would be of great importance for practical
applications in different fields. The objective of this thesis is therefore to study a first implementation
of a QA-based SVR and to lay out the basis for future research on this particular model. This thesis is
structured as follows: in chapter 3 the theory and the mathematical formulation of Support Vector Ma-
chine is briefly described. In chapter 4 the a brief introduction on quantum computing, both gate-based
and adiabatic is provided. In chapter 5 the reformulation of the original SVR optimization problem as
a QUBO and the proposed methods for combining the solutions of the annealer are described and in
chapter 6 the results of the experimental validation are illustrated and discussed. Finally, in chapter
7 the main conclusions as well as future prospect regarding the proposed implementation of QSVR
are outlined and chapter 8 is dedicated to the acknowledgments.



Chapter 3

Support Vector Machines

3.1 Introduction

Support vector machines are one of the most popular supervised algorithms of machine learning
mainly used for classification and regression problems. They were first introduced in 1992 in [6]. The
reason for their popularity is to be found in the fact that the determination of the model parameters
amounts to a convex optimization problem, therefore any local solution corresponds to a local one.
Moreover, the mathematical structure of the problem allows the usage of the so-called “kernel trick”,
thus highly increasing the algorithm’s expressive potential [4]. Another important feature of support
vector machines is that, due to their formulation, they have sparse solutions, thus highly reducing the
computational burden.
The functioning of support vector machines for both classification and regression purposes is now
briefly illustrated.

3.2 SVM for classification

For the mathematical derivation as well as the notation used in this section I referred to [4] (pp. 326-
330). In the classification the algorithm takes as input a dataset comprised of N datapoints (xn, tn),
where xn is a vector of dimension d and tn is a binary label such that tn ∈ {−1, 1}. Support vector
machines use the function

y(x) = wTφ(x) + b (3.1)

where w is a weight vector, φ(x) is non-linear feature-space transformation and b is called bias
parameter. The label is then assigned by evaluating the sign of equation (3.1). To determine the
optimal values for the parameters of the hyperplane defined in equation 3.1 the concept of margin
is introduced: it is defined as the smallest distance between the hyperplane and any of the training
samples. In the most common implementation of SVM called Maximum Margin Classifier (MMC) the
parameters are chosen so that the margin is maximized. Geometrically, the distance from a generic
point x and a hyperplane defined by the formula wTx + b is given by |y(x)|/||w||, however, in this
formulation only solutions for which all points are correctly classified are considered, i.e. solutions for
which the condition tny(xn) > 0 holds for each n. The distance can then be rewritten as:

tny(xn)

||w||
=
tn(wTφ(xn) + b)

||w||
(3.2)

By using its definition the formula of the margin is given by:

arg max
w,b

{
1

||w||
minn[tn(wTφ(xn) + b]

}
(3.3)

(Here the term ||w|| has been taken outside the minimization since it does not depend on n).
The problem is then reformulated in a way such that is easier to solve. In fact, it can be easily
shown that by rescaling both w and b by the same scalar factor the distance tny(xn)/||w|| remains
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CHAPTER 3. SUPPORT VECTOR MACHINES 7

unchanged. Therefore it is arbitrarily possible to choose to set the value tn(wTφ(xn) + b) = 1 for the
closest point to the margin. Because of this all the other points will satisfy the constraint

tn(wTφ(xn) + b) ≥ 1, n = 1, ....,N (3.4)

Then it can be shown that the problem amounts to solving:

arg min
w,b

{
1

2
||w||2

}
(3.5)

with the constraints defined by (3.4). Here the term b does not appear in the function to be minimized
but it acts implicitly on the value of w through the constraints. To optimize this function it is necessary
to introduce the lagrange multipliers αn ≥ 0, one for each constraint. The corresponding Lagrangian
function is:

L(w, b,α) =
1

2
||w||2 −

N∑
n=1

αn{tn(wTφ(xn) + b)− 1} (3.6)

(Here the notation α = (α1, ....,αN ) has been used). By imposing the derivatives with respect to w
and b to be equal to 0 the following conditions are obtained:

w =

N∑
n=1

αntnφ(xn) (3.7)

0 =

N∑
n=1

αntn (3.8)

By substituting them into (3.6) it is possible to obtain the dual form of the function to be minimized:

L̃(a) =
N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmtntmk(xn,xm) (3.9)

with the constraints:
αn ≥ 0 n = 1, ...,N (3.10)

N∑
n=1

αntn = 0 (3.11)

Where the kernel function has been defined as: k(xn,xm) = φ(xn)φ(xm). Many different kernels can
be used, but the most popular in machine learning and especially SVM are the sigmoid, the polynomial
and the radial basis function (RBF) kernel [4].
The discriminant function then becomes:

y(x) =
N∑
n=1

αntnk(x,xn) + b (3.12)

and the associated decision function is:
sign(y(x)) (3.13)

An important aspect of the solution can be deduced by observing the complementary Karush Kuhn
Tuecker(KKT) conditions: in fact the following three properties hold:

αn ≥ 0 (3.14)

tny(xn)− 1 ≥ 0 (3.15)

αn{tny(xn)− 1} = 0 (3.16)
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Figure 3.1: Graphical depiction of the hyperplane (black) in the feature space with the margins (red)

In particular, by examinating the last condition it can be seen that for any data point the associated
multiplier αn is either equal to 0 or tny(xn) = 1. This implies that only the points for which tny(xn) =
1, which are called support vectors, affect the prediction of new samples. This is of great importance
for the applicability of SVM since it grants the sparsity of the solution.
Finally, to the determine the value of b it can be observed that, for any support vector xn, tny(xn) = 1.
Therefore:

tn

(∑
m∈S

αmtmk(xn,xm) + b

)
= 1 (3.17)

where S denotes the set of the support vectors.
Even though only one support vector is needed, it is advisable to average over all of them in order to
obtain a more numerically stable solution.

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

αmtmk(xn,xm)

)
(3.18)

where NS denotes the number of support vectors.

3.3 SVM for regression

After having introduced the Support vector machines for classification problems, their application to
regression is now briefly described. The idea of using SVM for regression tasks was introduced in [9].
As was done for the previous section I referred to [4](pp.339-343) for the mathematical derivation of
Support Vector Regression as well as the notation used. Generally, in a regression problem the task
is to minimize a regularized function of the type:

1

2

N∑
n=1

{yn − tn}2 +
λ

2
||w||2 (3.19)

Where here a least-square loss function has been considered but others can be used instead. However,
in order to obtain sparse solution, a ε-insensitive error function is used: it produces a zero error if
|y(x)− t| < ε, with ε being strictly positive. For the scope of this work the following cost function will
be considered:

Eε(y(x)− t) =

{
0, if |y(x)− t| < ε;

|y(x)− t|, otherwise
(3.20)
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Figure 3.2: Graphical depiction of the considered error function

The error function therefore becomes:

C
N∑
n=1

Eε(y(xn)− tn) +
1

2
||w||2 (3.21)

Here C is used to indicate the regularization parameter. In this analysis y(x) is given by (3.1).
To better solve the problem slack variables are introduced. In particular for each data point 2 slack
variables, ξn ≥ 0 and ξ̂n ≥ 0 are defined. The situation where ξn > 0 arises when tn > y(xn) + ε,
whereas ξ̂n > 0 corresponds to a situation where tn < y(xn) − ε. An example is illustrated in figure
3.3.
By introducing slack variables points can lie outside the ε-tube if such variables are different from
zero. This allows us to rewrite the error function as:

C

N∑
n=1

(ξn + ξ̂n) +
1

2
||w||2 (3.22)

subject to the constraints:
ξn ≥ 0 (3.23)

ξ̂n ≥ 0 (3.24)

tn ≤ y(xn) + ε+ ξn (3.25)

tn ≥ y(xn)− ε− ξn (3.26)

For each n ∈ {1, . . . ,N}
As we did for the classification case the dual form of the cost function is obtained by setting the
derivative with respect to w, b, ξ, ξ̂n to zero. It can be shown that the resulting function is:

L̃(α, α̂) =
1

2

N∑
n=1

N∑
m=1

(αn − α̂n)(αm − α̂m)k(xn,xm)− ε
N∑
n=1

(αn + α̂n) +
N∑
n=1

(αn − α̂n)tn (3.27)
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subject to the constraints:

N∑
n=1

(αn − α̂n) = 0 (3.28)

0 ≤ αn ≤ C (3.29)

0 ≤ α̂n ≤ C (3.30)

Once the parameters are determined predictions of new input can be done using:

y(x) =

N∑
n=1

(αn − α̂n)k(x,xn) + b (3.31)

The value of b can be obtained from any point for which 0 < an < C. Due to the constraints it
must satisfy ε+ yn − tn = 0. Therefore the value of b is obtained through the formula:

b = tn − ε−
N∑
m=1

(αm − α̂m)k(xn,xm) (3.32)

As for the classification case it preferrable to average over different estimations of b to get a more
stable solution:

b =
1

NS

∑
n∈S

(
tn − ε−

N∑
m=1

(αm − α̂m)k(xn,xm)

)
(3.33)

where,as was done for the classification case, S and NS are used to denote the set of the support vectors
and the number of them, respectively. An analogous procedure can also be done by considering points
for which 0 < α̂n < C. Interesting insights can be observed by analyzing the KKT conditions:

αn(ε+ ξn + yn − tn) = 0 (3.34)

α̂n(ε+ ξ̂n − yn + tn) = 0 (3.35)

(C − αn)ξn = 0 (3.36)

(C − α̂n)ξ̂n = 0 (3.37)

By analyzing the first one it is possible to note that either αn = 0 or ε + ξn + yn − tn = 0, implying
that only the points that lie on the boundary of the tube (ξn = 0) or those who lie above it (ξn > 0)
contribute to the prediction of new inputs. Analogous conclusions can be deduced from the second
equation where α̂n > 0 entails that the corresponding point either lies on the boundary or below it
(ξ̂n = 0 and ξ̂n > 0 respectively). In the regression case the support vectors are those data points
that lies in the boundary of the ε-tube or outside it. Finally, the constraints ε+ ξn + yn − tn = 0 and
ε+ ξ̂n − yn + tn = 0 cannot be simultaneously satisfied because by considering the following:

ε+ ξn + yn − tn + ε+ ξ̂n − yn + tn = 0

2ε = −(ξn + ξ̂n)

that is not possible since by definition ε > 0 and ξn ≥ 0, ξ̂n ≥ 0.
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Figure 3.3: Graphical depiction of the target function along with the ε-insensitive tube and the training
data points



Chapter 4

Quantum Computing

The first formal formulation of Quantum Computing was proposed in 1985 by David Deutsch [22].
In 1992 was proposed By Deutsch and Richard Josza the first quantum algorithm that was able to
outperform the classical counterpart [23]. In the following years many other important quantum
algorithms were proposed such as Shor’s algorithm for factoring integers [28], Grover’s search algo-
rithm [13] and the Harrow-Hassidim-Lloyd algorithm for solving a linear system of equations [15].
Before discussing the principles of quantum computation the basics of quantum mechanics and the
mathematical formalism necessary for the understanding will be briefly illustrated.

4.1 Basics of Quantum Mechanics

4.1.1 Postulates of Quantum Mechanics

Quantum mechanics, which was mainly developed in the 20th century, is the physical theory used to
describe physical systems at a microscopic scale. In fact, classical mechanics and classical electromag-
netism fail to describe nature at a microscopic scale. This brief introduction to quantum mechanics
will start by providing the postulates that describe the phenomenology of the theory. A deep analysis
of quantum mechanics and its mathematical framework is beyond the scope of this thesis, in this
section we will provide the reader with the sufficient knowledge to understand the basic principles of
quantum mechanics in order to apply them to the understanding of quantum computing.

• A measurable physical quantity is defined as observable and we denote it with capital letters.
The first postulate states that given an observable A, repeated measurements on it in the same
physical condition (state) yield different results. The possible outcomes of the measurement
process of the observable A are denoted with σ(A) = {a1, . . . , an} ∈ R, given the state ψ, the

probability of obtaining a specific outcome follows the probability distribution P(A)
ψ over σ(A).

For any observable A exists at least one state ψa such that: P(A)
ψa

= 1.

• Given a state ψ and an observable A, if a measurement process over A is performed and the
outcome is a ∈ R, then the state of the system after the measurement process is ψa.

• There are some pairs of observables that cannot be simultaneosuly measured. Such observables
are defined as incompatible.

4.1.2 Mathematical framework

The mathematical tools necessary for the understanding of quantum computing are now briefly il-
lustrated. Generally, quantum mechanics is described with linear operators over infinite-dimension
Hilbert spaces. However, for the scope of quantum computing only finite-dimension Hilbert spaces
can be considered, which simplifies the mathematical formalism. The definition of Hilbert space is:

12
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A Hilbert space is defined by a pair consisting of a complex vector space H and a map 〈 | 〉, called
inner product, defined over H ×H → C satisfying the following properties:

• is linear with respect tp the right entry

• is anti-linear with respect to the left entry

• 〈ψ|φ〉=〈φ|ψ〉∗ ∀ ψ,φ ∈ H

• 〈ψ|ψ〉 ≥ 0 ∀ψ 6= 0

A basis of H {ψi}i is said to be orthonormal if it satisfies the condition: 〈ψi|ψj〉 = δij , with δij being
the Kronecker delta. When considering a Hilbert space of finite-dimension n, after having fixed a basis
of such space, it is possible to identify it with the complex vector space Cn and any linear operator
on it can be identified with a n × n matrix. The set of linear operators over an Hilbert space H are
indicated with the notation B(H). For a linear operator A defined over the Hilbert space H we can
define the adjoint operator of A, A† such that :〈

A†ψ
∣∣∣φ〉 = 〈ψ|Aφ〉 ∀ψ,φ ∈ H (4.1)

If for a given operator A the equality A† = A the opertaor is called self-adjoint. Given an operator
A over H, the trace of A is defined as:

tr(A) :=
∑
i

〈ψi|Aψi〉 (4.2)

with {ψi}i being an orthonormal basis of H

For an operator A, its spectrum σ(A) is defined as:

σ(A) := {λ ∈ C : Aψ = λψ,ψ ∈ H\{0}} (4.3)

For a λ ∈ σ(A), the eigenspace Hλ is defined as:

Hλ = span{ψ ∈ H : Aψ = λψ} (4.4)

With the definition of inner product 〈 | 〉 the Dirac or bra-ket notation was introduced. According
to it, a unit vector of a Hilbert space H is denoted with the symbol ket |ψ〉, while a vector of the
dual space is defined with the notation bra 〈ψ|. When considering vectors with their coordinate with
respect to a given base it is possible to see that:

|ψ〉 =

c1...
cn

 〈ψ| = (c∗1, . . . , cn∗) (4.5)

The values ci are complex numbers and c∗i are their complex conjugates. The inner product 〈 | 〉 of
the Hilbert space is called braket and it can be seen as the product between a vector of the Hilbert
space and another one from the corresponding dual space. Another important mathematical tools
necessary for the understanding of quantum computing is the concept of tensor product:
given the Hilbert spaces HA and HB and ψ ∈ HA and Sφ ∈ HB, it is called tensor product of
vectors the map ψ ⊗ φ defined as:

ψ ⊗ φ : HA ×HB → C
ψ ⊗ φ(x; y) := 〈ψ|x〉A · 〈φ|y〉B (4.6)

The vector space defined by :

HA ⊗HB := span{ψ ⊗ φ, ψ ∈ HA,φ ∈ HB} (4.7)
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is called tensor product of Hilbert spaces and it is a Hilbert space itself with associated inner
product defined as:

〈
ψ ⊗ φ

∣∣ψ′ ⊗ φ′〉 :=
〈
ψ
∣∣ψ′〉

A
·
〈
φ
∣∣φ′〉

B
(4.8)

ψ,ψ′ ∈ HA,φ,φ′ ∈ HB

If the Hilbert Space HA has dimension n and HB has dimension m, then HA⊗HB has dimension n ·m.

It is also possible to define the tensor product over linear operators: let A ∈ B(HA) and B ∈ B(HB),
with B(H) denoting the set of linear operators defined over H. The tensor product between A and
B is defined as:

(A⊗B)(ψ ⊗ φ) := Aψ ⊗Bφ (4.9)

For the tensor product of linear operators holds the following property:

B(HA)⊗ B(HB) := B(HA ⊗HB) (4.10)

with B(HA)⊗ B(HB) = span{A⊗B : A ∈ B(HA),B ∈ B(HB)}

When considering two Hilbert spaces HA and HB of dimension m and n respectively and fixing a base
for both of them it is possible to identify them with Cn and Cm. Moreover, by fixing the bases the
linear operators acting on them correspond to the matrices of dimension n×n and m×m. The tensor
product between an operator A ∈ B(HA) and an operator B ∈ B(HB) amounts to the Kronecker
product between the corresponding matrices:

A ∈ B(HA) =


a11 · · · a1n
· · · · ·
· · · · ·
· · · · ·
an1 · · · ann

 B ∈ B(HB) =


b11 · · · b1m
· · · · ·
· · · · ·
· · · · ·
bm1 · · · bmm



A⊗B =


a11B · · · a1nB
· · · · ·
· · · · ·
· · · · ·

an1B · · · annB

 (4.11)

It is now possible to provide a basic mathematical formulation of quantum mechanics that revolves
around the following points:

• A quantum system is mathematically described a Hilbert space H

• Observables are defined by self-adjoint operators over H.

• pure states are equivalence classes of unit vectors in H such that:

ψ ∼ φ⇔ ∃α ∈ R : ψ = eiαφ (4.12)

The last point introduces the notion of pure state that is a notion of state that encodes the maximum
knowledge about a quantum system. In particular, every unit vector in a Hilbert space represents
a pure state, however, the correspondence is not bijective since two different unit vectors represent
the same state if the condition 4.12 holds. Therefore, it possible to identify the quantum states with
bijective relation not the unit vectors |ψ〉 but the 1-dimensional orthogonal projectos |ψ〉 〈ψ| ∈ B(H).
In fact, if two unitary vector differ for a multiplicative phase factor, and therefore are associated to
the same state, the orthogonal projector will be the same:

ψ = eiaφ, α ∈ R
|ψ〉 〈ψ| = eiαe−iα |φ〉 〈φ| = |φ〉 〈φ|
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On the other hand, a mixed state ρ is defined as a convex combination of pure states:

ρ =
n∑
i=1

λi |ψi〉 〈ψi| (4.13)

with λi ≥ 0 ∀i and
∑
i

λi = 1

With these notion it is now possible to analyse the postulates of quantum mechanics under a mathe-
matical point of view:

• Randomness of measurement outcomes: each observable A is described by a linear operator
and the possible outcomes of the measurement process are the elements of the spectrum of A
σ(A). If the system is in the pure state ψ the probabilty to obtain a ∈ σ(A) as a measurement
outcomes Pψ(a) is given by:

Pψ(a) = 〈ψ|Paψ〉 = ‖Paψ‖2 (4.14)

{Pa}a∈σ(A) is called spectral measure and is defined as:

Pa =

dimHa∑
i=1

|ψi〉 〈ψi| (4.15)

where Ha is the eigenspace of a and {ψi}i=1,...,dimHa is an orthonormal basis of it. Therefore,
the expectation value for the outcome of A while the system is in the state ψ, 〈A〉ψ is equal to:

〈A〉ψ =
∑

a∈σ(A)

a Pψ(a) = 〈ψ|Aψ〉 (4.16)

If the system is in a mixed state ρ the probability to obtain a as a result and the expectation
become:

Pρ(a) = tr(Paρ) (4.17)

〈A〉ρ = tr(Aρ) (4.18)

• Post-measurement state: If a measurement process of A is carried out on a system in the
pure state ψ with outcome a ∈ σ(A), then the state of system after such measurement becomes:

ψa =
Paψ

‖Paψ‖
(4.19)

If the system is in a mixed state ρ, the state after the measurement becomes:

ρa =
PaρPa
tr(Paρ)

(4.20)

• Compatible and incompatible observables: Two observables are said to be compatible
when it is possible to commute them:

[A,B] := AB −BA = 0 (4.21)

If the conditition 4.21 holds then we have that: PAa P
B
b = PBb P

A
a ∀a ∈ σ(A) and ∀b ∈ σ(B).

Therefore, the joint probability Pψ(A = a ∧ B = b) of measuring a for A and b for B.

The last mathematical definition that is needed for the introduction of quantum computing is that of
composite system, which revolves around the concept of tensor product that was introduced before.
Specifically, given two quantum systems SA and SB that are mathematically described by the Hilbert
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spaces HA and HB, respectively, the composite quantum system H is described by the tensor product
between HA and HB:

H = HA ⊗HB

A pure state Ψ ∈ HA ⊗HB of the composite system that can be written as:

Ψ = ψ ⊗ φ ψ ∈ HA, φ ∈ HB (4.22)

is called separable, otherwise it is called entangled. The concept of entangled and separable states is
of utmost importance for many algorithms in quantum computing. The characterization of separable
and entangled states provided above only applies to pure states, now we will provide a generalization
that also applies to mixed states. A quantum state ρ of the composite system HA ⊗HB is separable
if ρ can be expressed as:

ρ =
∑
i

λiρ
(A)
i ⊗ ρ(A)i (4.23)

with λi ≥ 0 ∀i,
∑
i

λi = 1, ρ
(A)
i ∈ S(HA), ρ

(B)
i ∈ S(HB)

Where the notation S(H) denotes the set of all states, both pure and mixed, of the Hilbert space H.

4.2 Quantum Circuit Model

4.2.1 Qubits and qubits registers

In this section will be provided an introduction to the quantum computing gate model. One of the
first important notion of such model is the qubit. The qubit can be thought as a generalization of
the concept of bit that is used in classical computers. A bit is, in fact, a basic unit of information
corresponding to a two-sates system. The possible states are usually denoted with 0 and 1. In the
mathematical framework outlined in the previous section the states of a system are represented with
elements of a Hilbert space, therefore the states of the classical bit are formulated as basis vectors of
a two-dimensional Hilbert space, |0〉 and |1〉, where:

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
(4.24)

A qubit is therefore a pure sate of the two-dimensional Hilbert Space and can be therefore expressed
as a complex combination of the classical states |0〉 and |1〉. The general for of a qubit ψ is:

ψ = α |0〉+ β |1〉 with α,β ∈ C and |α|2 + |β|2 = 1 (4.25)

Quantum computers operate on quantum systems composed by multiple qubits called qubit reg-
isters. Such composite systems are mathematically described by using the notion of tensor prod-
uct: specifically, a n-qubit register is defined by considering the tensor product of the n different
Hilbert spaces and is therefore equivalent to the space (C2)⊗n. For example let us consider the
2-qubit register: the 22 classical states are given by the tensor prosuct of the single qubit states:
|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |0〉 (often a compact notation of the form: |ψφ〉 is used to denote
|ψ〉 ⊗ |ψ〉). The four possible states are:

|00〉 =
1

[
1
0

]
0

[
1
0

] =


1
0
0
0

 |01〉 =
1

[
0
1

]
0

[
0
1

] =


0
1
0
0



|10〉 =
0

[
1
0

]
1

[
1
0

] =


0
0
1
0

 |11〉 =
0

[
0
1

]
1

[
0
1

] =


0
0
0
1


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Figure 4.1: The Bloch Sphere, named after the physicist Felix Bloch, provides a graphical representa-
tion of the pure states of a qubit by encoding the parameters describing the qubit into the values of
the angles θ and φ that are used to identify a unique location on the sphere. A point on the sphere at

coordinates θ̂ φ̂ corresponds to the qubit cos θ̂2 |0〉+ eiφ̂ sin θ̂
2 |1〉. Figure originally from [26]

A state of such quantum system is mathematically represented by a combination α1 |00〉 + α2 |01〉 +
α3 |10〉 + α4 |11〉 with αi ∈ C and

∑
i |αi|2 = 1. The 2-qubit register it also useful to provide an

example of the entaglement. Let us consider as example the state 1√
2
|00〉+ 1√

2
|11〉: if a measurement

process on the first qubit is performed and the result obtained is |1〉, then then it is possible to know
already that the state of the second qubit is |1〉 without performing any measurement whatsoever.
An analogous reasoning also applies if the result of the measurement on the first qubit yields |0〉 as a
result.

4.2.2 Quantum gates and quantum circuits

As was done in the previous section the notion of quantum gates is introduced starting from the
parallelism with classical ones. Logic gates represent the operation that are done on the bits to
perform calculations. Let us consider, for instance, the case in which n input bits are processed by a
logical gate that in turn gives as result m output bits. In the previous subsection we have indicated the
states of the single bit as |0〉 and |1〉 and the states of a composite of bits as the tensor product of the
bits involved. Therefore the n-bit input register and the m-bit output register are defined as column
vectors of dimension 2n and 2m respectively. The logical gate is in turn mathematically described as
a matrix of dimension 2m × 2n that multiplies the 2n × 1 input register resulting in a 2m × 1 output.
For example the well-known NOT gate, that has the formula: NOT|0〉 = |1〉, NOT|1〉 = |0〉 takes the
form:

NOT =

[
0 1
1 0

]
[
0 1
1 0

] [
1
0

]
=

[
0
1

] [
0 1
1 0

] [
0
1

]
=

[
1
0

]
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In the same way the AND gate that takes as input 2 bits and gives as result one bit takes the form:

AND =

[
1 1 1 0
0 0 0 1

]
In quantum computing the gates operating on qubits, that most of the time are in a superposition of
states, must be reversible. For example, the AND gate is not reversible becsause it is not possible to
determine the input of the function given the corresponding output, whereas the NOT gate belongs
to the set of reversible operations. To ensure that a gate U is reversible the associated matrix must be
unitary, i.e. UU † = U †U = I, where I is the identity matrix. Some of the most important quantum
gates will be now described.

• Hadamard gate: This gate, named after the mathematician Jacques Hadamard, is one of the
most important and most used in quantum computing.

H =
1√
2

[
1 1
1 −1

]
(4.26)

The application of the gate to the states |0〉 and |1〉 produces the states:

1√
2

[
1 1
1 −1

] [
1
0

]
=

[
1√
2
1√
2

]
(4.27)

1√
2

[
1 1
1 −1

] [
0
1

]
=

[
1√
2

− 1√
2

]
(4.28)

These sates are one of the most used in quantum algorithms.

• Controlled NOT gate: The gate, also denoted as CNOT for short, acts on 2 qubits and
produces two qubits as output. The first input qubit is called control qubit and affects the
operation that is carried out on the other one. If the control qubit is in the state |0〉 the identy
operation is applied on the second qubit, whereas if it is in the state |1〉 the negation is performed.
From the definition it easy to observe that the CNOT is its own inverse: it maps the state |x, y〉
to |x,x⊕ y〉, where ⊕ is the XOR operator. A second application of the CNOT to the state
|x,x⊕ y〉 gives as output |x,x⊕ y ⊕ x〉 = |x, y〉. The corresponding unitary matrix is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4.29)

• Phase gate: The gate is parametrized by the parameter φ and acts on a single qubit according
to the formula: α |0〉+ β |1〉 → α |0〉+ ejφβ |1〉. The associated unitary matrix is:

Pφ =

[
1 0
0 ejφ

]
(4.30)

The set consisting of the quantum gates H, CNOT and Pφ is called universal because any quantum
circuit can be built as a composition of such gates.
Another important set of quantum gates is the set that consists of the Pauli matrices (σx,σy,σz),
which are named after the physicist Wolfgang Pauli, that take the form:

σx =

[
0 1
1 0

]
(4.31)

σy =

[
0 −i
i 0

]
(4.32)

σz =

[
1 0
0 −1

]
(4.33)
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As can be seen by the equations above, the σx is equivalent to the NOT gate and the σz is equivalent
to the phase gate with φ = π. The Pauli matrices will be used in section 4.4 to construct the problem
Hamiltonian for the Quantum Annealing Process.

4.3 Adiabatic Quantum Computing

Adiabatic Quantum Computing is a paradigm of Quantum computation that was first proposed in
2000 by Fahri et al. [11]. In such a setting a quantum physical system is prepared in its lowest energy
configuration state, that is also known as ground state, the other states are instead called excited
states. The system’s Hamiltonian is then gradually changed in such a way that the ground state of the
final Hamiltonian corresponds to the solution of the considered optimization problem. If the mutation
of the Hamiltonian occurs slowly enough the system remains in the ground state during the process
according to the quantum adiabatic theorem formulated in 1928 by Born and Fock [5], that sates:

”A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it
slowly enough and if there is a gap between the eigenvalues and the rest of the Hamiltonian spectrum”.

The general idea of adiabatic quantum computing could be summarized as follows:

1. A quantum is in the ground system of a known Hamiltonian. Such Hamiltonian should be chosen
in such a way that is easy to place the system in its ground state.

2. The Hamiltonian is gradually changed at a rate that is slow enough to guarantee that the
adiabatic condition is met. The final Hamiltonian should ”encode” the optimization problem, i.e.
the ground state of the final Hamiltonian should correspond to the solution of the optimization
problem.

3. When the mutation of the Hamiltonian is complete a measurement process of the quantum
system is performed.

The adiabatic process is carried out for a time T. Afterwards the conditions on T such that the
adiabatic theorem is satisfied will be provided. The Hamiltonian is time-dependent H(t) and the
evolution of a system in state ψ0 is determined by the Schrödinger’s equation:

{H(t)}t∈[0,T ] ⊂ B(H)

i~
d

dt
ψ(t) = H(t)ψ(t) (4.34)

with ψ(0) = ψ0 as initial condition

For convenience the Hamiltonian is usually reparametrized in the form: H̃(s) = H(Ts) with s ∈ [0, 1].
The eigenstate problem therefore becomes:

H̃(s) |I, s〉 = EI(s) |I, s〉 (4.35)

for s ∈ [0, 1]

Where the ground state of H̃(s) was denoted with |0, s〉 and E0(s) = minσ(H̃(s)). By analyzing the
adiabatic theorem under a mathematical point of view it is possible to see that:

let λ(s) = E1(s)− E0(s) for s ∈ [0, 1] then

lim
T→+∞

| 〈0, 1|ψ(T )〉 | = 1 (4.36)

with ψ(T ) being the solution of 4.34 at time t = T considering as initial conditions ψ(0) = |I = 0, s = 0〉.
Here we have considered T →∞, but if a determined value of T is considered instead, and therefore



CHAPTER 4. QUANTUM COMPUTING 20

a determined value of the speed at which the Hamiltonian is changed, it is possible to ensure that the
system is in the ground state at the end of the process with a precision that follows the rule:

Given a T such that

T ≥ 1

ε
·

maxs

∥∥∥ d
dsH̃(s)

∥∥∥
op

[mins λ(s)]2
(4.37)

if λ(s) = E1(s)− E0(s) > 0 for every s ∈ [0, 1] then:

‖Pψ(T )‖2 ≥ 1− ε2 (4.38)

Where ε ∈ (0, 1) and the operator ||A||op, that is called operator norm is defined as: |A||op =
sup||ψ||=1 ||Aψ||. The term ψ(T ) in equation 4.38 is the solution of the Schrödinger equation 4.34
at time t = T considering as initial condition ψ(0) = |0, 0〉. The term P , instead, denotes the orthog-
onal projector on the eigenspace HE0(1). The quantity ||Pψ(T )||2 is equal to the probability to find
the system in the ground state at the end of the evolution process.

The procedure to apply adiabatic quantum computation to solve optimization problems will now
be outlined. For the purposes of this work will be considered the optimization of a function f that
takes as input n boolean variables. The system is thus described by a Hilbert space H = (C2)⊗n. The
time-dependent Hamiltonian is then constructed considering a combination, that varies through time,
of two time-independent Hamiltonians HI and HF :

H(t) =

(
1− t

T

)
HI +

t

T
HF (4.39)

• HI is the initial Hamiltonian with a well-known ground state

• HF is the Hamiltonian encoding the problem

The time T is chosen in such a way that the adiabatic theorem is satisfied.

In the following subsection will be shown an example on how to apply AQC to the optimization
of a boolean function.

4.3.1 Optimization of a 3-SAT problem with Adiabatic Quantum Computing

The general formulation of a 3-SAT problem over n boolean variables is:

B(z) =

m∧
i=1

Ci(zi1, zi2, zi3) (4.40)

with z ∈ {0, 1}n

In the formula 4.40 Ci denotes a clause that involves at most 3 of the n binary variables. An assignment
of the n boolean variables z∗ ∈ {0, 1}n is a solution if all the m clauses are satisfied. To optimize the
problem with AQC we first define, for each clause Ci an energy function hi that is defined as:

hi(zi1, zi2, zi3) =

{
0 if (zi1, zi2, zi3) satisfies Ci,

1 otherwise
(4.41)

From the functions hi, i ∈ {1, . . . ,m} it is possible to define the general energy function h : {0, 1}n →
{0, 1, . . . ,m}:

h(z) =
m∑
i=1

hi(zi1, zi2, zi3) (4.42)

Such function has the following properties:
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1. h ≥ 0 ∀z

2. h = 0 ⇐⇒ all clauses are satisfied

To transfer the problem to a quantum computing setting the boolean variables are encoded into the
qubits using the basis encoding: zi → |zi〉. For each clause Ci of the 3-SAT problem a operator Hi

acting on the n-qubit Hilbert space is defined as:

Hi |z1, . . . , zn〉 := hi(zi1, zi2, zi3) |z1, . . . , zn〉 (4.43)

The problem Hamiltonian thus becomes:

HF =
m∑
i=1

Hi (4.44)

In particular: HF |ψ〉 = 0 ⇐⇒ ψ is a superposition of states |z1, . . . , zn〉 such that the corresponding
binary variables assignment (z1, . . . , zn) are solutions of the problem, i.e satisfy all clauses.

4.4 Quantum Annealing

Quantum Annealing (QA) is a metaheuristic used to solve optimization problems. Like Adiabatic
Quantum Computing it is based on the concept of time-dependent Hamiltonias but it differs from it
for some aspects. As was done for AQC, the time-dependent Hamiltonian is expressed as a combination
of two time-independent Hamiltonians:

H(t) = HP + γ(t)HD (4.45)

The term HP is the problem Hamiltonian, whose ground state represents the solution of the problem,
while the term HD is called kinetic term or disorder Hamiltonian. The function γ(t) is a monotonically
decreasing function to 0 that is defined over [0,T ]. Therefore, like in AQC, there is again an evolution
process, called annealing, of an Hamiltonian, but there are some important differences between the
two models of computation:

1. Quantum Annealing, in contrast with AQC, is not a universal model of computation. QA is a
quantum-based technique to solve optimization problems

2. In QA the system is not isolated

3. Unlike AQC, QA does not assume that the whole computation takes place in the ground state.

4.4.1 D-wave quantum annealer

For the implementation of the proposed model of QSVR the D-wave quantum annealer Advantage
has been employed. In this section a brief descpription of the D-wave QA, especially focusing on the
differences between its predecessor 2000Q, is provided. The information provided in this section for
the description of the D-Wave Advantage system were taken from the official techinical report [18].
The main features of the Advantage system are the new topology for the problem embedding and
the higher value of qubits and coupler, that are more than 5000 and 35000, respectively. A higher
number of qubits directly translates to the possibility to solve more complex problems. Moreover, in
the new design the number of couplers per quibits has increased from 6 to 15. A higher number of
couplers for each qubit increases the compactness of the system, which relates to the length of the
chain length. In fact, it was found that the chain lengths on the Advantage System were on average
half as long as those of 2000Q. Having shorter chains is of great importance for the solution of the
optimization problems because it has been observed that having chains of shorter length allows the
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system to provide solutions of better quality given the same computational resources. In the D-Wave
systems the equation 4.45 takes the form:

H(s) = −A(s)

2

(∑
i

σ̂(i)x

)
+
B(s)

2

(∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,j σ̂
(i)
z σ̂(j)z

)
(4.46)

In the equation 4.46 the first term is the initial Hamiltonian, whereas the second one represent the
problem Hamiltonian. The functions A(s) and B(s) control the influence of each of the two Hamil-
tonians during the annealing process. They are controlled by the parameter s that is the normalized

annealing time variable and whose values lie in the range [0, 1]. The terms σ̂
(i)
x and σ̂

(i)
x are the Pauli x

and z matrices operating on the i-th qubit. The terms hi and Ji,j are called qubit biases and coupling
strengths, respectively. Mathematically, the biases represent the values of the linear coefficients in the
considered QUBO problem, whereas the coupling strength represent the quadratic terms.

Figure 4.2: Graphical illustration of the functions A(s) and B(s) employed by the D-wave hardware
for the annealing process. Figure originally from [16]
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Quantum Support Vector Regression

5.1 Optimization problems with the D-wave quantum annealer

To solve a optimization problem with a quantum annealer it is necessary to reformulate it as QUBO
(Quadratic Unconstrained Binary Optimization) problem. The general formulation of such a problem
is:

f(x) =
∑
i≤j

aiQi,jaj (5.1)

Here, the terms ai are the variables of the problem that can take as value either 0 or 1 and Q is
a upper-triangular real-valued matrix. The reason why Q is upper triangular is to be found in the
problem formulation: the element Qi,j of the matrix Q corresponds to the value of the coupler relative
to the variables ai and aj if i 6= j or to coefficient of the linear term of the variable ai if i = j. The
elements Qi,j and Qj,i refer to the same mathematical quantity and thus only one of them is needed to
completely describe the problem. Moreover, the reason why the quadratic terms a2i are not considered
is due to the fact that the binary variables can only take as value either 0 or 1 and therefore the
following equality holds: a2i = ai.
In section 4.4.1 it is described how the coefficients of the QUBO problem are related to the system
Hamiltonian. Even though the QUBO problem is intrinsically unconstrained it is possible to run
constrained optimization problems by modifying the cost function in such a way that the solution
autmatically enforce the constraints. For instance, as will be discussed more in detail in the following
section, in our case this is done by adding some penalty terms to the cost function whose strength is
regulated by a hyperparameter in order to enforce the constraints.

5.2 Turn the optimization problem into a QUBO problem

It will now be shown how to turn the optimization problem of the Support vector regression into a
instance of a QUBO problem in order to solve it with the quantum annealer. The procedure will start
by analyzing the Support vector regression cost function minimization problem 3.27 subject to the
constraints 3.28, 3.29 and 3.30 that are rewritten here for convenience.

L̃(α, α̂) =
1

2

N∑
n=1

N∑
m=1

(αn − α̂n)(αm − α̂m)k(xn,xm) + ε

N∑
n=1

(αn + α̂n)−
N∑
n=1

(αn − α̂n)tn

N∑
n=1

(αn − α̂n) = 0

0 ≤ αn ≤ C

0 ≤ α̂n ≤ C

23
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To express the problem as a QUBO one the encodings introduced in [7] and [29] for the coefficients α
and α̃ are applied. In the regression case, however, for each training sample xn 2 Lagrange multipliers
are needed. The number of the logical qubits of the problem will be 2KN , where N is the number
samples and K is the number of qubits used to encode each coefficient αn or α̂n. In the proposed
implementation the assignment of the variables is arranged as follows: the first KN qubits are used
to encode the N αn multipliers, whereas the remaining KN are used to encode the N α̂n coefficients.
The encoding formulae therefore are given by:

αn =
K∑
i=0

BiaKn+i (5.2)

α̂n =
K∑
i=0

BiaK(N+n)+i (5.3)

where B is the basis used for the encoding. If the usage of negative exponent for the basis is needed
the formulae 5.2 and 5.3 are reformulated by introducing a parameter k0:

αn =
K−1∑
i=0

Bi−k0aKn+i (5.4)

α̂n =
K−1∑
i=0

Bi−k0aK(N+n)+i (5.5)

In this section, for simplicity, the mathematical model will be developed considering the encoding
equations functions 5.2 and 5.3, however, the procedure considering the encoding equations 5.4 and
5.5 is the same and the final results only differ for the exponent of the base B in the equations.
The constraints to be satisfied are: 3.28, 3.29, and 3.30. The last 2 of them are also known as box
constraints. Since an ∈ {0, 1} and ân ∈ {0, 1} for n ∈ {1, . . . ,N} the lower bound for the variables αn
and α̂n is always satisfied for such constraints. Moreover, by choosing:

C =
K−1∑
i=0

Bi (5.6)

the upper bound is always upheld as well. To enforce the first constraint 3.28 a square-penalty term
that is controlled by the hyperparameter ξ is added to the lagrangian function:

ξ

( N∑
n=1

(αn − α̂n)

)2

(5.7)

The problem formulation also requires that for each sample either αn or α̂n is equal to 0. To en-
force such constraint a linear penalty term, whose strength is controlled by the hyperparameter β is
introduced:

β

( N∑
n=1

αnα̂n

)
(5.8)

The equation 5.8 exploits the fact that since at least one of the coefficients αn or α̂n must be 0, their
product must be equal to 0 as well. The constraint is applied to the whole sum of the products αnα̂n,
however, since each of the αn and α̂n is non-negative according to the chosen encoding equations,
placing a constraint on their sum of each product to be equal to 0 enforce each single product to be
equal to 0.
Therefore, by adding 5.9d and 5.8 to 3.27 and considering the encoding 5.2 and 5.3 the final cost
function to minimize is obtained. To keep the notation simple each term of the cost function will
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be considered individually and then the final result will be obtained by adding them together. The
equations then are:

1

2

∑
n

∑
m

(∑
i

BiaKn+i −
∑
j

BjaK(N+n)+j

)(∑
i

BiaKm+i −
∑
j

BjaK(N+m)+j

)
k(xn,xm) (5.9a)

ε
∑
n

(∑
i

BiaKn+i +
∑
j

BjaK(N+n)+j

)
(5.9b)

−
∑
n

(∑
i

BiaKn+i −
∑
j

BjaK(N+n)+j

)
tn (5.9c)

ξ

(∑
n

(∑
i

BiaKn+i −
∑
j

BjaK(N+n)+j

))2

(5.9d)

β

(∑
n

(∑
i

BiaKn+i

)(∑
j

BjaK(N+n)+j

))
(5.9e)

For simplicity the equations 5.9a, 5.9d and 5.9e are rewritten as:∑
nmij

Bi+jk(xn,xm)(aKn+iaKm+j − aKn+iaK(N+m)+j − aK(N+n)+iaKm+j + aK(N+n)+iaK(N+m)+j)

(5.10a)

ξ

( ∑
nmij

(aKn+iaKm+j − aKn+iaK(N+m)+j − aK(N+n)+iaKm+j + aK(N+n)+iaK(N+m)+j)

)
(5.10b)

β

(∑
n

∑
i

∑
j

Bi+jaKn+iaK(N+n)+j

)
(5.10c)

respectively. The cost function then becomes:

N−1∑
n,m=0

K−1∑
i,j=0

(
aKn+iQ̃Kn+i,Km+jaKm+j − aKn+iQ̃Kn+i,K(n+m)+jaK(N+m)+j

− aK(N+n)+iQ̃K(N+n)+i,Km+jaKm+j

+ aK(N+n)+iQ̃K(N+n)+i,K(N+m)+jaK(N+m)+j

) (5.11)

Here Q̃ is a 2NK × 2NK matrix associated to the problem. Its elements are given by:

Q̃Kn+i,Km+j = Bi+j(
1

2
k(xn,xm) + ξ) + δnmδijB

i(ε− tn) (5.12a)

Q̃Kn+i,K(N+m)+j = −Bi+j(
1

2
k(xn,xm) + ξ − β) (5.12b)

Q̃K(N+n)+i,Km+j = −Bi+j(
1

2
k(xn,xm) + ξ) (5.12c)

Q̃K(N+n)+i,K(N+m)+j = Bi+j(
1

2
k(xn,xm) + ξ) + δnmδijB

i(ε+ tn) (5.12d)

for n,m ∈ {0, . . . ,N − 1} and i, j ∈ {0, . . . ,K − 1}. If the encoding is selected according to equations
5.4 and 5.5 the matrix takes as final formulation:
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Q̃Kn+i,Km+j = Bi+j−2k0(
1

2
k(xn,xm) + ξ) + δnmδijB

i−k0(ε− tn) (5.13a)

Q̃Kn+i,K(N+m)+j = −Bi+j−2k0(
1

2
k(xn,xm) + ξ − β) (5.13b)

Q̃K(N+n)+i,Km+j = −Bi+j−2k0(
1

2
k(xn,xm) + ξ) (5.13c)

Q̃K(N+n)+i,K(N+m)+j = Bi+j−2k0(
1

2
k(xn,xm) + ξ) + δnmδijB

i−k0(ε+ tn) (5.13d)

By construction the matrix is symmetric therefore it is possible to obtain the upper-triangular matrix
Q associated to the QUBO problem by considering:

Qi,j =


Q̃i,j + Q̃j,i, if i < j;

Q̃i,j , if i = j;

0, otherwise

(5.14)

5.3 Combination of the solutions

The D-wave quantum annealer provides as output a set of solutions whose number is selected by the
user. For the experimental validation conducted in this work 40 solutions were considered for each
problem instance. Some solutions might be better than others therefore it is of utmost importance to
combine the solutions giving more credit to the best solutions. To do so a dataset called validation
set is used to determine which solutions for the coefficients α and α̂ are better. The dataset consists
of samples made by couples of input output values (xn, yn), n ∈ {0, . . . ,V − 1} , where V is the
dimensionality of the validation set. The input x can in general be a vector of a given dimension but
in our test cases we are focusing only on one-variable function. Each solution provided by the annealer
is denoted as (α, α̂)i where the subscript i denotes the i-th solution provide as output by the annealer.
It might be useful to visualize the values of each solutions as elements of matrix S of size M × 2N ,
where M is the number of solutions provided by the annealer. Each row of the matrix corresponds to
a candidate solution. Within any row the first N elements of the matrix correspond to the coefficients
α whereas the remaining N correspond to the coefficients α̂. The matrix takes the form:

S =



α11 α12 · · α1N α̂11 · · α̂1N

α21 α22 · · α2N α̂21 · · α̂2N
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

α(M−1)1 α(M−1)2 · · α(M−1)N α̂(M−1)1 · · α̂(M−1)N
αM1 αM2 · · αMN α̂M1 · · α̂MN


(5.15)

For each solution a prediction on the validation set is made by substituting the values of (α, α̂)i into
equation 3.31. To assign credit to each solution a cost function between the actual and the predicted
values is calculated. Two cost function are considered in our analysis: the mean squared error (MSE)
and the log-cosh loss, whose formulae are:

MSE = (Y true,Y predicted) =
1

N

N∑
i=1

(ytruei − ypredictedi )2 (5.16)

log-cosh loss(Y true,Y predicted) =
N∑
i=1

log2(cosh(ytruei − ypredictedi )) (5.17)
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Figure 5.1: Comparison between MSE and log-cosh loss function

As can be seen in figure 5.1 the behaviour of the two functions is very similar for small values of
the error, whereas for bigger ones the log-cosh tend to give less penalty. In this work 2 has been used
as value for the base of the logarithm but others can be used. By using the log-cosh therefore the cost
function will penalize less outliers. Every solution is therefore associated with 2 error measure that
are used to assign credit, which is calculated by evaluating the multiplicative inverse of the errors.
These quantities will be reffered to as mse score and lc score. The mse score and lc score can be
interpreted as vectors of dimension M, where the i-th component corresponds to a measure of how
well the solution (α, α̂)i performed on the prediction of the validation set. The elements of the score
vectors will be used as coefficients of a weighted average for the α and α̂. To do so, however, the
entries of the vectors need to satisfy the following properties: each one must be non-negative and their
sum must be equal to 1. The first condition is always satisfied by the choice of the loss functions,
whereas to ensure the second condition two different methodologies were proposed. In the first one,
that is referred to as scores normalization each element of the vector is divided by th sum of all the
elements of the vector, while in the other methodology a softmax is applied to the vector. The softmax
function σ : Rd → Rd, which is widely used in machine learning, is defined as follows:

σ(z)i =
ezi∑d
j=1 e

zj
(5.18)

with z,σ(z) ∈ Rd and i ∈ {1, . . . , d}

Both the scores normalization and the softmax ensure that the entries of the score vectors can be
interpreted as the coefficients of a convex combination that is then used to calculate the weighted
average. Specifically, 4 different weighted average can be implemented, by combining the choice of the
cost function and the choice of the strategy to obtain the coefficient of the convex combination. In
the experimental analysis will be also considered as a method to obtain a final solution the process
of simply selecting the best set of α and α̂ according to the performances on the validation set. For
each method the procedure to obatin the final solution, given the vector of the weight coefficients w
of dimension M, is the same. Given the matrix S described in equation 5.15 the vector (α, α̂)final of
dimension 2N is obtained with:

(α, α̂)finali =

M∑
j=1

wjSji with i ∈ {1, . . . , 2N} (5.19)
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Therefore the 5 methods for combining the solution will be:

• scores normalization or scores norm: it uses as loss function the mean square error and each
coefficient is obtained by dividing itself by the sum of all the others

• softmax : it uses the mean square error as cost function and the softmax function to get the
coefficients of the weighted average

• lc scores norm it uses the log-cosh as cost function and calculate the weights by dividing each
score by the sum of all the others

• lc softmax it uses log-cosh as cost function and then uses sofmax function to get the coefficients

• best set of alphas: returns the best set of α and α̂ based on wchich set of such values achieved
the smallest error on the validation set considering as loss function the mean squared error



Chapter 6

Applications and test cases

The results of applying the quantum SVR to the approximation of different target functions will
now be shown. In the proposed examples the implementation the quantum SVR is applied to very
simple problems where the train and the test set consist of samples from a one-variable function.
Specifically, 3 different functions are considered: a sine function a sinc and a triangular function.
For each function two different cases, for a total of six different test cases, are analysed: in the first
one the training set is the same for each run and consist of samples equally spaced in the input
domain, whereas for the latter the training set is different for each iteration and is randomly sampled.
To make the comparison between the traditional and the quantum SVR fair the validation set for
the combination of the annealing solutions will be the same dataset used for the training phase,
therefore both traditional and quantum SVR will use the same number of samples for the training
phase. In fact, using additional training sample only for the quantum case might alter the results
of the comparison. In the experimental validation all the results of the different implementations
of the QSVR are compared with the traditional one on a test set that consists of 100 datapoints
randomly taken from the considered input range. For each of the six different test cases the results of
7 experiments, chosen from all experiments that have been carried out, are illustrated and commented.
Both implementations will employ the same radial basis function (RBF) kernel. Such kernels have the
property that they depend only on the distance of the input, i.e K(xn,xm) = K(‖xn − xm‖). The
kernel that will be used in our experimental analysis is the gaussian kernel:

K(xn,xm) = e−γ‖xn−xm‖ (6.1)

where γ is an hyperparameter.

(a) γ = 1 (b) γ = 5

Figure 6.1: Graphical depiction of the gaussian RBF kernel with different values of γ

29
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The values for the hyperparameters γ, C and ε, will be the same for both SVR and QSVR.
Moreover, for both of them a high value of the hyperparameter C will be used because we are interested
in the study of the overfitting case. The choice of the value C will also be chosen in such a way that
the constraints 3.29 and 3.30 are satisfied, i.e choosing a value for C that is higher to the quantity
defined in equation 5.6.
For the implementation of the traditional SVR as well as the generation of the dataset the Python
library Scikit-learn was used whereas the QSVR was implemented using the D-wave Ocean software.
For the generation of the plots and tables the library Matplotlib was used. For each of the considered
test cases the number of training samples used was 20. The number was kept the same for each of the
test functions in order to assess the performances of the QSVR in different situations with the same
training resources.

6.1 Test case: sine function

In this test case the quantum SVR was applied to the estimation of a sine function. The quantum
SVR and the traditional SVR are tested on a dataset that consists of samples from a sine function:
each training samples is therefore made up by the tuple (x,A sin(fx)), where A denotes the amplitude
of the oscillation and f its frequency. For this setting the values for A and f were 1 and 2, respectively,
while the input range of the independent variable was [0, 5]. The value for the hyperparameter C is
set to 1000 beacuse we are interested in the study of the overfitting case.

Figure 6.2: the function y = sin(2x) in the considered range for x

6.1.1 First test case: evenly spaced training points in the input domain

Some examples of the application of the QSVR to the approximation of the function y = sin(2x) will
be now illustrated and commented.
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Figure 6.3: Results for test 1 for the function y = sin(2x)

Figure 6.4: Results for test 2 for the function y = sin(2x)
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Figure 6.5: Results for test 3 for the function y = sin(2x)

Figure 6.6: Results for test 4 for the function y = sin(2x)
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Figure 6.7: Results for test 5 for the function y = sin(2x)

Figure 6.8: Results for test 6 for the function y = sin(2x)
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Figure 6.9: Results for test 7 for the function y = sin(2x)

The images above refer to 7 tests that were run on a training dataset that consisted of 20 samples
evenly spaced in the input domain. The values for the hyperparameter of the QSVR were B = 3.2,
K = 2, and k0 = 2. Such values were found empirically by running some validation tests. In the
various tests the different implementations of the QSVR performed differently with the methodology
based on softmax and the one that consiedered only the best solution being the best. This fact
suggests that focusing heavily on the best solutions and ignoring or giving small credit to the others
might provide better results. This is also supported by the fact that the methodologies scores norm,
lc scores norm and lc softmax, which tend to be less ”elitary” and penalize less outliers, performed
worse. As can be seen in the images above the traditional SVR managed to outperform the QSVR
implementation in all tests, however the QSVR managed to achieve good results in approximating the
target function. In particluar one fact worth noting is that the QSVR managed to infer the periodical
behaviour of the function correctly with results comparable to those of the traditional SVR, but in
contrast it performed worse when determining the values of the peaks and the valleys of the sine. This
characteristic of the QSVR might be due to the fact that the through the encoding defined in 5.2 and
5.3 the values of α and α̂ are discretized.

6.1.2 Second test case: randomly sampled dataset

Some results on the same function with the same hyperparameters setting will now be presented. The
difference is, however, that the training set used now considered samples taken randomly from the
input range instead of taking them evenly spaced. In this section the same implementations of SVR
and QSVR are now tested on a dataset that is randomly generated and varies for each experiments.
The values of the hyperparameters are kept the same as before.
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Figure 6.10: Results for test 1 for the function y = sin(2x)

Figure 6.11: Results for test 2 for the function y = sin(2x)
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Figure 6.12: Results for test 3 for the function y = sin(2x)

Figure 6.13: Results for test 4 for the function y = sin(2x)
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Figure 6.14: Results for test 5 for the function y = sin(2x)

Figure 6.15: Results for test 6 for the function y = sin(2x)
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Figure 6.16: Results for test 7 for the function y = sin(2x)

In this setting where the samples are now randomly taken from in the input range instead of being
evenly spaced the QSVR achieved a similar performances with respect to the previous setting. In
fact, the comparison between the scores achieved by the different implementations of QSVR and the
performances of SVR are similar to the previous case. Figure 6.13 constitutes an interesting case:
both classical and quantum SVR performed poorly in the input range around the first peak. However,
it is important to point out that since both model did not perform well this behaviour is very likely
to be attributable to the algorithm of the SVR itself. In this work, in fact, it was not proposed a
new model for regression but rather an innovative way to optimize a pre-existing regression algorithm.
This fact is of great interest in the context of how the different paradigms of quantum computing are
applied to machine learning, in fact, as was pointed out in [14] ”Circuit-based quantum computers have
been predominantly used to compute the prediction of a quantum machine learning model that can
be trained classically”, ”while quantum annealers have been proposed to optimize classical models”.
Finally, as in the previous case the best methods for the combinations of solutions are the softamx
based on square-loss and the best set of alphas method.

6.2 Test case: sinc function

In this section I am going to analyze some results regarding the application of the proposed QSVR to
the estimation of a sinc function. Specifically, the QSVR was applied to the estimation of the function
y = 5sinc(x). As for the test case of the sine function the input range considered is [0, 5]. The value
of γ is set to 3, the same used in the previous test case, whereas the values of the hyperparameters
concerning the encoding of the QSVR were: B=2.5, K=2 and k0 = 1.

The value for the hyperparameter C is still set to 1000.
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Figure 6.17: the function y = 5sinc(x) in the considered range for x

6.2.1 First test case: evenly spaced training points in the input domain

Figure 6.18: Results for test 1 for the function y = 5sinc(x)
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Figure 6.19: Results for test 2 for the function y = 5sinc(x)

Figure 6.20: Results for test 3 for the function y = 5sinc(x)
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Figure 6.21: Results for test 4 for the function y = 5sinc(x)

Figure 6.22: Results for test 5 for the function y = 5sinc(x)
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Figure 6.23: Results for test 6 for the function y = 5sinc(x)

Figure 6.24: Results for test 7 for the function y = 5sinc(x)

The results achieved by the QSVR for the sinc function are worse in terms of mean squared error when
compared with the previous test case. However, by observing the images it is possible to notice that
the QSVR approximated the target function very well, almost equal to the classical implementation,
in the whole input domain with the exception of the first part where the function has a higher slope.
The reason for this is likely to be attributable to the aforementioned discretization of the αn and
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α̂n, but further investigation is needed to confirm this hypothesis. For the validation phase aimed at
determine the best values for the hyperparameters the QSVR was in fact tested on the same function
with a higher value for K, and thus a higher number of possible values for the αn and ˆalphan, but such
configuration led to worse results. Another interesting result that can be observed in this test-case is
how the different implementations of the QSVR performed in terms of accuracy on the test set. In the
experiments conducted on the sine function the implementations softmax and best set of alphas always
obtained better accuracy score than the others. For the sinc function, however, this is no longer the
case and the various implementations performed vaery differently throughout the different test-runs.
This is particularly evident in figure 6.18 and 6.19 where the method best set of alphas was the one
that obtained the worst accuracy score for the estimation of the test set. This indicates that the
performances of a particular method for the combination of the solutions depends on the considered
function.

6.2.2 Second test case: randomly sampled dataset

Figure 6.25: Results for test 1 for the function y = 5sinc(x)
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Figure 6.26: Results for test 2 for the function y = 5sinc(x)

Figure 6.27: Results for test 3 for the function y = 5sinc(x)
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Figure 6.28: Results for test 4 for the function y = 5sinc(x)

Figure 6.29: Results for test 5 for the function y = 5sinc(x)
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Figure 6.30: Results for test 6 for the function y = 5sinc(x)

Figure 6.31: Results for test 7 for the function y = 5sinc(x)

By analyzing the numerical results and the depictions of the approximations of the target function it is
possible to infer that the performances of the QSVR and SVR highly depend on the training dataset.
This dependence on the sampling for the initial dataset is greater with respect to the case of the
sine function discussed before. The test cases illustrated in figure 6.26, 6.27 and 6.31 constitute some
interesting cases: the approximation of the target function in the region where the slope is greater
are better than the previous setting with the uniformly-distanced dataset for the same region. Those
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cases, in fact, correspond to a dataset with a higher density of samples in such region. In 6.25 the
quantum and classical SVR models failed at approximating the function in the interval [0, 1]. This
result, however, should not be considered in a bad way: as was pointed out before, in this work was
not proposed a new machine learning model but rather a new optimzation method for a pre-existing
one, therefore the fact that the QSVR behaved similarly to the SVR should be seen as a good result.

6.3 Test case: triangular function

In this final setting the QSVR is tested for the regression on a triangular function. The formula of
such function is given by:

Λ(x;α) =

{
α− |x|, if |x| < α;

0, otherwise
(6.2)

Figure 6.32: Depiction of the considered triangular function

In the proposed test case the function had the form y = Λ(x; 2). For this case the values of the
hyperparameters were: B=2.0, K=2, k0 = 1 and γ = 1.5. The value of C is still set to 1000 in order
to study the overfitting case.
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6.3.1 First test case: evenly spaced training points in the input domain

Figure 6.33: Results for test 1 for the function y = Λ(x; 2)

Figure 6.34: Results for test 2 for the function y = Λ(x; 2)
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Figure 6.35: Results for test 3 for the function y = Λ(x; 2)

Figure 6.36: Results for test 4 for the function y = 2Λ(x; 2)
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Figure 6.37: Results for test 5 for the function y = 2Λ(x; 2)

Figure 6.38: Results for test 6 for the function y = 2Λ(x; 2)
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Figure 6.39: Results for test 7 for the function y = 2Λ(x; 2)

The most evident fact that can be observed from this test case is how bad the solutions combination
method best set of alphas compared to the other methods. This is an interesting fact when compared
to the results described in section 6.1 where the method best set of alphas yielded the best results.
This again supports the theory that there is not a best methodology to combine the solutions, but it
should be chosen depending on the considered case.
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6.3.2 Second test case: randomly sampled dataset

Figure 6.40: Results for test 1 for the function y = 2Λ(x; 2)

Figure 6.41: Results for test 2 for the function y = 2Λ(x; 2)
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Figure 6.42: Results for test 3 for the function y = 2Λ(x; 2)

Figure 6.43: Results for test 4 for the function y = 2Λ(x; 2)
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Figure 6.44: Results for test 5 for the function y = 2Λ(x; 2)

Figure 6.45: Results for test 6 for the function y = 2Λ(x; 2)
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Figure 6.46: Results for test 7 for the function y = 2Λ(x; 2)

The most relevant fact that can be observed in this test-case is that, for the first time, the implementa-
tion of QSVR outperformed the traditional one in the cases illustrated in figure 6.41 and 6.42. For the
test run of figure 6.41 the traditional SVR performed better than the softmax and best set of alphas
implementation but was surpassed by the others. In the test of figure 6.5 instead, the traditional SVR
was surpassed by every implementation of QSVR and the overall best performance was achieved by
the methodology scores norm. This event is of great importance for understanting the potentialities
of Quantum Annealing as an optimization metaheuristic. However, for fairness, it is also important to
point out that the experimental results proposed here constitute only a small part of the experimental
validation that was conducted where in most of the cases the traditional SVR still outperformed all
the QSVR implementations to some degree. Nevertheless, this remains an encouraging result in the
context of the application of QA as an effective methodology for optimization problems in the field of
machine learning.
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Conclusions

7.1 Final Considerations

In this work was proposed an implementation of a Support Vector Machine for Regression that em-
ployed Quantum Annealing to solve the optimization problem related to the training phase of the
algorithm. In order to solve the associated optimization problem it was turned into a QUBO by using
an encoding strategy for the variables α and α̂ analogous to the one proposed in [29] for the classi-
fication case. The main issue in this configuration is that the values that the α and α̂ can take are
discretized and limited in number according the formulae 5.4 and 5.5. In [29] was noted that this fact
might not be of great importance in the classification because ”the global order of magnitude of all αn
is often not as important as the relative factors between different αn”. In the regression case, however,
this might not be the case because the object of interest is for the estimation of the target variables to
be the most precise as possible and therefore the values of the αn and α̂n themselves might be of more
importance rather than their relative factors. In [29] was noted that the usage of a negative exponent
of the basis for the encoding, i.e. 5.4 and 5.5, was not necessary for the achievement of good results,
however, in the experimental analysis that was conducted for this work the usage of the parameter k0
in the encoding provided better results if chosen correctly. This observation might support the theory
that in the regression case the exact value of the coefficients α and α̂ have a more important role tahn
they do in the classification case. The various implementations of the Quantum SVR also proved to
be more sensible to the tuning of the hyperparameters, especially for γ, that controlled the shape of
the kernel function. This characteristic of the QSVR could also be ascribed to the discretization of
the αn and α̂n, they in fact, can only take a limited set of values and therefore might not adapt well to
different values of γ. Another fact worthy of note concerns the choice of the value of K, i.e. the number
of logical qubits used for encoding each variable of the original problem. It is expected, in fact, that
the larger the value of K, and therefore the larger the number of values that the αn and α̂n can take,
the better the precision in the regression. However, empirical validation showed that choosing too
large a value for K resulted in poor performances in the prediction of the test set. However, it should
be noted that the experimental validation was conducted on simple functions of one variable with a
small number of training samples. A deeper study on the effect of hyperparameters tuning should be
performed in order to gain a better understanding of their effect on the performances of the regression
process. In section 6.3 the QSVR was applied to the estimation of a triangular function and in some
instances it managed to even surpass the the traditional implementation of SVR(figure 6.41 and 6.42).
Even though in the majority of the experimental runs the classical SVR still performed slightly better
or similarly to the quantum counterpart this achievement is of of great importance to understand the
capabilities of Quantum Annealing in the context of optimization problems. It worth noting, in fact,
that since the original problem was continous and constrained the problem itself had to undergo an
important transformation in order to be solved by the annealer. Therefore, the fact that the annealer
managed to achieve results that are similar or in some cases even better than the classical counterpart
even though the optimization problem is very different from its original formulation is remarkable and
indicates the potentialities of QA.
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7.2 Further Developments

The test cases analyzed in this thesis are very simple problems and are of little interest in the context of
practical applications. Nevertheless, this analysis constitutes an interesting starting point for the study
of the potentialities of QA-based SVR. Future research on this field will investigate the application
of it to more complex and bigger dataset and will assess the result of applying such methodologies
to problem instances of practical interest. The development of a reliable and scalable implementation
of a QSVR would be of great importance in the context of regression analysis and ML. In the future
the study of more complex problems will also require a larger number of qubits and couplers for the
problem formulation and therefore an effective application of the proposed QSVR implementation in
these contexts highly depends upon the availability of quantum hardware powerful enough to sustain
such a complexity in terms of computation.

7.3 Conclusions

In conclusion, QA established itself as a powerful tool for optimization problems and a valuable asset
for machine learning applications. The main drawback, epsecially when dealing with ML applications,
consists of the fact that considered problem must be in the QUBO form. Moreover, QA, as was
pointed out in [14], is a tool mainly used to optimize traditional machine learning algorithm in the
training phase rather than building new ones. In this work the encoding strategy was inspired from an
implementation that was originally designed for classification applications, therefore in the future other
encoding strategies could be investigated in order to improve the expressive power of the regression
algorithm. Further research will also investigate the application of QSVR on bigger and more complex
problems while also trying to make some improvements on the problem formulation.
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