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Introduction

Edge Impulse is the leading software platform that helps companies build and
deploy real machine learning (ML) applications at the edge. Building
production-grade and edge-ready ML pipelines with Edge Impulse helps
enterprises unlock more value than ever by converging information technology
(IT) and operational technology (OT) in the industrial space. We accelerate time to
market, improve ML outcomes, and de-risk on-device deployment.

Edge Impulse (noted as El throughout this document) offers a comprehensive
solution that caters to various stages of a standard machine learning (ML) pipeline.
It resembles the toolkit of a skilled architect designed for building skyscrapers. Just
as an architect starts with a foundation, builds upwards, adjusts to challenges, and
integrates new designs and technologies over time, El provides the tools to start,
adapt, and refine ML solutions, ensuring they're robust, current, and optimized
for your data.

With a focus on data collection, cleaning, feature extraction, model training,
testing, and deployment, Edge Impulse ensures that users can access the
necessary tools at each step. Users can efficiently manage the entire ML workflow,
from data ingestion to model deployment, by seamlessly connecting these
components through a unified software platform. Beyond its integrated approach,
Edge Impulse provides APIs and SDKSs, enabling users to customize their
workflows and integrate with external tools when needed.

Moreover, Edge Impulse acknowledges the importance of collaboration,
incorporating collaboration tools while maintaining a strong focus on security and
compliance, which is particularly relevant for teams working in the industrial
productivity domain. With these features, Edge Impulse empowers professionals
of any ML expertise to build and deploy ML models to the edge effectively.

Upcoming sections of this guide delve deeper into the features and capabilities
that Edge Impulse offers to aid understanding and provide insight on using it
effectively for industrial machine health and productivity ML applications.
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About This Guide

This guide serves as a reference example of using the Edge Impulse platform for
building an edge machine learning (ML) application to enable an industrial
predictive maintenance use case.

It is designed as a tutorial, providing descriptions and examples for each part of
building an Edge ML application, namely:

- Data Collection, Cleaning, and Transformation

- Digital Signal Processing (DSP) — i.e., Feature Engineering

- ML Model Construction — how to choose, train, test and tune

- Deployment of the resulting inference library on any target device

In addition to the Edge ML context for the abovementioned parts, the guide
introduces a notion of an Impulse — which Edge Impulse defines as a processing
pipeline including DSP and ML model. This is followed by the Data section that
provides a real-world example dataset to demonstrate how to work with data in
the Edge Impulse platform and illustrate an example industrial use case.

The section Creating the Impulse — Step by Step Guide follows with a sequential
explanation of all the actions necessary to create a complete Edge ML pipeline

— from importing a dataset to training and evaluating a machine learning model.
An impulse is the fundamental part of the Edge Impulse platform — it represents
a pipeline consisting of feature engineering and a machine learning model that is
deployed to the edge device.

The section Deploying the Impulse — Putting it All to the Edge provides
instructions on deploying the resulting ML inference pipeline to an edge device.
You are encouraged to follow through — all the resources, including a sample
dataset, are publically available and referenced throughout this guide.

Everything described in the guide (and more) can also be performed
programmatically through our APIs or Python SDK.

In addition, links to relevant articles in our comprehensive documentation portal
are provided for an in-depth understanding. There, one can find more information
about each of the steps and features covered in this guide, alongside other helpful
information.
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Prerequisites for Following the Tutorial Steps in This
Guide

- Clone a GitHub repository
github.com/edgeimpulse/industrial-solution-guide
It contains the code that is demonstrated for some of the features (section
Pre-Processing and Transformation), as well as a copy and a link to the
publically accessible dataset used in this guide

- Become a part of an Edge Impulse organization — if you are not a paying
customer yet you can get access to an organization as part of enterprise trial
studio.edgeimpulse.com/trial-signup

- Set up an AWS S3 bucket (to be able to work with organizational dataset
features)

- Create a project in the Edge Impulse platform, or copy a pre-made project
that already has everything set up.
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The Impulse

The Edge Impulse platform allows one to create an Impulse — a machine learning
pipeline that will eventually run on the target device. A combination of an impulse
and a dataset constitutes a project. An impulse consists of “blocks” representing
the steps in the ML pipeline:

- Input data block: Creating a training dataset and selecting applicable input
parameters, such as window size and the sampling frequency for time series,
or resizing resolution for images

- Processing block: Selecting the DSP algorithm, tuning the algorithm
parameters, and generating features from input data

- Learning block: Selecting and tuning the machine learning model, and
training / retraining the model using the features generated by the DSP
block.

Figure 1: Overview of the impulse

The Edge Impulse platform provides all the infrastructure necessary for each step
of Impulse creation, including CPU and GPU compute for model training and DSP
feature generation, AutoML tools such as EON Tuner, as well as graphs and
visualizations for evaluating the performance, and other advanced features.
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For each block type, Edge Impulse has already developed a large set of processing
algorithms and ML models that can be selected for composing an Impulse.

Users can extend the set of blocks available to compose an impulse in the
platform. This can be achieved via Custom Processing Blocks and Custom
Learning Blocks. Custom blocks are helpful if the user has an existing DSP
algorithm implementation or an ML model architecture created outside of Edge
Impulse that is specific to some sensor data or a particular use case.

Once the impulse is created, the whole pipeline can be deployed to a target
device. The Deployment step allows to generate a C++ library that contains the
version of the impulse highly optimized specifically for inference on the target
device or gateway that is used in your project.

Further sections cover each step of creation and deployment separately.

On-Device Performance Estimation

As mentioned above, each block of the
resulting impulse will eventually run on the
edge device. Therefore it is valuable to be able
to have an idea about how each step of the
pipeline will perform once deployed as early as
possible to avoid spending time on algorithms
that might not fit the selected device.

Figure 2: Device selection at project Dashboard

To be able to see these estimations, select the target device in the “Dashboard”
section of your project (Project Info pane). Now, any time there is any modification
to processing and learning blocks the live performance metrics estimations will be
updated. Metrics include latency, memory usage, and storage requirements and
are visible on the respective blocks' pages. A total estimation of the whole impulse
will also be provided on the deployment page at the final step of the impulse
creation.

Figures 3a and 3b show estimation for DSP and ML model blocks of an impulse
for the target selected for this project — Nordic nRF5340 DK.
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Figure 3a: Performance metrics estimation for DSP algorithm in a processing block
Figure 3b: Performance metrics estimation for ML model in a learning block

Data

The process of creating a machine learning model begins with data. The data may
originate from various devices or other sources (prototype devices being
developed vs industrial-grade reference devices), have different formats (excel
sheets, images, CSV, JSON, etc...), and are stored in various places (researchers'
computers, Dropbox folders, Google Cloud Storage, S3 buckets, etc...).

Data in Edge Impulse can exist in two places: Organization and Project.

Edge Impulse’s Organizational Data component (part of the data acquisition
pipeline) is designed to import data from various sources and plays a role similar to
the feature store of an organization. Data can be organized into different datasets
that can be reused across various projects and transformation experiments. This
facilitates the collection of diverse, real-world data (an in-house digital asset for
your organization) to train robust models.

Project 1

ng
\\
A
'Y s csv w|zard

Transformation
block 2
(project-specific)

Upload
Portal T
o] Dataset 2

Organizational Dataset 1 Transformation rganizati
"Bronze" dataset block 1 "Silver" / "Gold" dataset
(any data format) (Converted format, cleaned data)

Project 2

\ 4

Figure 4: Diagram of data flow paths from device through the Edge Impulse platform
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Additionally, users can collect and store training and test data directly in a
Project, alongside their model and deployment code. Rather than relying on
prebuilt datasets or requiring users to construct their own data-gathering
technology, Edge Impulse offers a variety of data ingestion methods.

Organizational data should be the default way to start an Edge ML project.
However, for quicker experiments, it is okay to use project data directly.

Figure 4 illustrates an example setup of dataflow in an organization, showcasing
different ways the data can be imported into the project. Data features are
described in more detail in the section Data.

About the Dataset

Building a dataset is a key part of the ML process. One of the key values that Edge
Impulse provides are its straightforward yet powerful tools for data collection, data
labeling, and transformation. Please consult our docs outline how to begin
creating your own datasets in Edge Impulse.

In this guide, we will showcase the features of Edge Impulse by using an open
dataset for sensorless AC motor drive diagnostics. The dataset can be accessed
here, as well as from the GitHub repository accompanying this guide.

This dataset consists of samples of measured electric current during the operation
of a sensorless AC motor drive. Samples are recorded for 11 sessions of motor
operation. In each session, the drive had various intact and defective components.
This results in 11 different sample classes, where each sample belongs to one of 11
classes.

Each class consists of samples gathered under different operating speeds, load
moments, and load forces. The current signals are measured with a current probe
and an oscilloscope on two phases.

The dataset is presented as a directory with 11 subdirectories, each corresponding
to one condition class. For each class, there are eight samples or time series
recordings of two axes of alternating current (AC). Each of these recordings is a
9000ms array of time series AC measurements sampled at 100000 Hz. The
recordings are in a generic .txt format that is often used when collecting data in
industrial settings. Subsection Pre-Processing and Transformation shows a

Industrial Productivity Solutions Guide 9


https://edge-impulse.gitbook.io/docs/edge-impulse-studio/organizations/data
https://edge-impulse.gitbook.io/docs/edge-impulse-studio/organizations/data
https://zenodo.org/records/35577#.YQFb9FNKgpV
https://github.com/edgeimpulse/industrial-solution-guide

process of converting this format to CSV, which is more commonly used for time
series data with ML tasks.

Throughout this guide, this dataset will be used to build a machine learning
pipeline to classify the motor failure based on the AC data. It can then be deployed
to the edge device — for this application, it could be an MCU that is attached to
the motor drive and has an AC sensor as an input.

Setting Up an Organization Dataset

An organization dataset can be imported from several locations, including an AWS
S3 bucket/Google Cloud Storage that might contain raw data.

External S3 Bucket

To link an S3 bucket to an organization, select the “Data” tab in the organization
view, select “Buckets” view, and click “+ Add new bucket” in the top right corner.

Fill in the bucket details. E.g., s3.eu-west-l.amazonaws.com/my-raw-data-bucket.

Figure 5: S3 bucket setup form
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Then fill in “my-raw-data-bucket” in the “Bucket” field, and “eu-west-1" in “Region.”
Fill in the bucket access key and secret key, and press “Add bucket.”

Now, when the S3 bucket is connected, it can be used to create an Organization
Dataset from one of the directories that the bucket has.

Figure 6: Organization Dataset setup form

Locate the “Datasets” view and click “+ Add new dataset.” Select “clinical” type
(this dataset type works well with automated pipelines covered later in this guide),
give the dataset a name, and provide the bucket path where the data is located.
The bucket can have several folders, each containing a different dataset, and can
be mapped to the Edge Impulse datasets of the bucket structure.

Click “Add dataset.” After the job is complete, a dataset explorer will appear that
contains the same file structure as the directory previously linked to the bucket.
Now, this dataset can be used to clean, transform, and import data across the
Edge Impulse platform.
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The status of the buckets’ connections can always be checked with a health
indicator, as shown by the green indicator on the “Buckets” tab.

Figure 7: Storage buckets list after a bucket is successfully added

ac-motor-current-faults-dataset/

Objects Properties

Objects (11) info

Copy S3 URI

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [ to get a list of all objects in your bucket. For others

to access your objects, you'll need to explicitly grant them permissions. Learn more [

l Actions ¥ I l Create folder I @ Upload
(D Show versions
0 Name a ‘ Type

0 O class1/ Folder
(m} 0 class10/ Folder
(m] 03 class11/ Folder
0 D class2/ Folder
0 O class3/ Folder
0 [ class4/ Folder
O O classs/ Folder
0 O classe/ Folder
0 0 class7/ Folder
0 D classs/ Folder
(] [ class9/ Folder

v Last modified v Size

Figure 8: Directory structure in the AWS S3 bucket
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Figure 9: Directory structure in an AWS bucket, connected to Edge Impulse

Upload Portal

An Upload Portal is a secure way to allow external parties to upload data to your
datasets. It provides an easy user interface for adding data without giving access
to the content of the dataset or the ability to delete any files. Data uploaded
through the portal can be stored on-premise or in your own cloud infrastructure.
Upload portals are particularly useful for collecting data from external sources
directly into your storage buckets, facilitating the use of this data in Edge Impulse
for further processing.

Importing Data into the Project

Sometimes it is necessary to add test data to only the current project being
worked on without going through a feature store and transformation pipeline. This
may be useful to quickly test a small subset of samples to test some initial
hypothesis. Below are the options to achieve this.

CSV Wizard

The most common format for importing time-series data is CSV. In case the
samples stored on the machine are already in CSV format, a template can be
defined by which all the rows will be imported by using one representative sample
and setting up the column semantics. This feature is called CSV Wizard and can
be accessed from the data upload page of a project.
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Direct Ingestion from Device

Two most common ways to upload data to the Edge Impulse platform directly
from an edge target device are:

1. Using the Data Forwarder: This method is easy to use if the device can
output the data it samples to the serial output. Connect the Edge Impulse
CLI tool to the serial port where the computer is receiving the device output,
and the samples will be forwarded to the Edge Impulse ingestion service
and arrive in the project.

2. Using the Edge Impulse C ingestion SDK: This method enables the user to
program the device firmware to send the samples to the Edge Impulse
ingestion service itself. This is an advanced method that is applicable if the
device can directly connect to the internet, but it can also unlock use cases
such as active learning to continue collecting raw data samples from devices
that are deployed in the field.

Pre-Processing and Transformation

Transformation blocks are a very flexible tool that can be leveraged as part of the
organizational features that the Edge Impulse platform offers. They can be used
for most advanced data transformation use cases. Transformation Blocks can take
raw data from the organizational datasets and convert the data into files that can
be loaded into an Edge Impulse project/another organizational dataset.

Transformation blocks can be used as part of automated organization pipelines
and project pipelines to automate the processes. Transformation blocks can fetch
external datasets, augment/create variants of the data samples, extract metadata
from config files, create helper graphs, align and interpolate measurements across
sensors, remove duplicate entries, and more.

Transformation blocks can be written in any programming language that can be
executed in a containerized environment, such as Docker. When deployed, they
run on the Edge Impulse platform infrastructure. The most common language
used for building a transformation block is Python.
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Here is an example of a transformation block used to transform the sensorless AC
dataset to a JSON format that the Edge Impulse project can work with. The Edge
Impulse CLI tools are required to set up and upload the transformation block to
the organization.

industrial-solution-guide/transform-ac-motor-fault-detection-data on ¥ main [?] v

ia 2 3.10.9 on & v20.10.22 via industrial-solution-guide via @base took 36.3s

-+ edge-impulse-blocks init

Edge Impulse Blocks v1.22.9

(node:7098) [DEP@@4@] DeprecationWarning: The “punycode”™ module is deprecated. Pl

ease use a userland alternative instead.

(Use “node ——trace-deprecation ...~ to show where the warning was created)

? In which organization do you want to create this block? Ivan Demo Org

Attaching block to organization 'Ivan Demo Org'

? Choose a type of block Transformation block

? Enter the name of your block ac-sensorless-txt-to-ei-json

» Enter the description of your block This block takes the files in the format pu
blished in ine "Dataset for Sensorless Drive Diagnosis" and transforms it into EI
json format

? What type of data does this block operate on? Data item (—-in-directory passed
into the block)

? Which buckets do you want to mount into this block (will be mounted under /mnt/
s3fs/BUCKET_NAME, you can change these mount points in the Studio)?

Your new block 'ac-sensorless-txt-to-ei-json' has been created in '/Users/ivan/ei

-solutions/industrial-solution-guide/transform-ac-motor-fault-detection-data'.

When you have finished building your transform block, run 'edge-impulse-blocks pu
sh' to update the block in Edge Impulse.

Figure 10: Uploading a transformation block through Edge Impulse CLI

The source files for this custom block are located in the repository accompanying
this guide.

Figure 11: Custom blocks list in organization after adding a new block
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DSP — Feature Engineering at the Edge

Digital signal processing (DSP) is the practice of using algorithms to manipulate
streams of sensor data. When paired with embedded machine learning, it is
common to use DSP to extract, modify, or generate signals before feeding them
into machine learning models.

A few reasons to apply DSP are:

Cleaning up a noisy signal

e Removing spikes or outlying values that might be caused by hardware
issues
Extracting the most important information from a signal

e Transforming the data from the time domain to the frequency domain

In Edge Impulse, DSP pre-processing is added to the impulse using the
Processing Block. It can be configured to use one of many algorithms that Edge
Impulse has already implemented, and each of them can fit a specific purpose
better. For example:

- Flatten: This is the simplest block that extracts statistical features from a
time-series sample, such as Max, Min, Standard Deviation, RMS, etc.

- Spectral Features: This block extracts frequency, power, and other
characteristics of a signal. Low-pass and high-pass filters can also be applied
to filter out unwanted frequencies. It is great for analyzing repetitive patterns
in a signal, such as movements or vibrations from an accelerometer.

Multiple DSP blocks can be selected for one impulse — in which case raw data
will be passed independently through all of them, and their outputs will be
combined to serve as inputs to the machine learning block.

In case there exists a DSP algorithm that is specific to some sensor data and use
case, and it is not present in Edge Impulse, it is possible to create a custom
processing block with the code of a custom algorithm and use it as part of the
impulse. The Edge Impulse team is available to assist in this process.
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Figure 12: Part of a list of pre-made processing blocks

Machine Learning Model

The machine learning model takes features generated by the processing block as
an input and outputs a result. The type of result depends on the problem to solve
and the application being built. Some examples of machine learning algorithm
types include:

- Classification: Classification algorithms try to solve the problem of
distinguishing between various types, or classes, of things. This could mean,
based on microphone input, determining if the sound is coming from a fan,
a chainsaw, or a pump. Classification models output a score from O to 1 that
represents how confident the model is that a given sample belongs to each
of the classes.

- Regression: Regression algorithms predict numerical values based on input
features. Common use cases include estimating temperature based on
historical data or estimating the motor speed based on the video feed of the
motor spinning.
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- Object detection: This set of algorithms locates the objects of interest on
the provided images. One common output format is bounding boxes — the
location and size of a “box” where the object is located on the image, with a
confidence score for each bounding box as in classification models.

A machine learning model goes through two phases of lifecycle: training and
inference. Training is a computationally intensive task — e.g., a convolutional
neural network model is shown labeled data, and its weights are adjusted in a
process called “backpropagation.” This is repeated many times until the model
learns to get the right label accurate enough. Due to the intense computing
power and infrastructure required, model training is performed in the cloud
through the Edge Impulse platform.

Next, the model will be deployed. After that, it will be working in “forward pass”
mode — in a process called “inference.” An optimized inference engine and a
trained model are what gets deployed to the edge device.

Training

Model training is the process where the machine learning model learns to
recognize patterns, correlations, and relationships in the input data.

Edge Impulse model training happens in the Learning Block
included in the impulse. A |learning block is the step of the pipeline
that describes the model architecture and training parameters at
train time (in the cloud) and performs model inference at inference
time (on the target device or gateway). You can use a pre-existing
model architecture (e.g. YOLOV5S or ResNet for object detection), or
build your own custom learning block.

Testing and Evaluation

After the model is trained, it can be tested in the Edge Impulse
platform. Testing means running an inference over a set of samples
that were not used during the training and evaluating the
performance metrics.

Model testing can be accessed from any project through a
dedicated tab in the left-side menu.
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Automated Machine Learning with EON Tuner

The EON Tuner is Edge Impulse's AutoML (automated machine learning) tool
designed to find and select the best embedded machine learning model for a
given application within the constraints of your target device. It performs
end-to-end optimization of the combination of a DSP algorithm and a machine
learning model, finding the ideal trade-off between these two blocks to achieve
optimal performance on the given target hardware.

Figure 13: EON Tuner's best suggested impulse configurations after a run completion
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The advantages of using the EON Tuner include:

1. Optimization for Target Devices: |t analyzes
performance directly on any device fully supported
by Edge Impulse, allowing for optimizations specific
to the device's hardware capabilities.

2. Support for Various Task Categories: The tuner
supports different types of sensor data, including
motion, images, and audio, optimizing for common
applications or task categories within these data
types.

3. Comprehensive Evaluation: It evaluates different
configurations for creating samples from your
dataset, tests various parameters and
configurations of processing blocks, and evaluates
different model architectures, hyper-parameters,
and data augmentation techniques.

4. Flexibility in Configuration: Users can define the
EON Tuner Search Space to constrain the tuner to
use steps defined by hardware, customer
requirements, or internal knowledge, offering
flexibility in meeting specific project needs.

S—

©

EDGE IMPULSE

Dashboard
Devices
Data acquisition
Impulse design
Create impulse
Spectral features
Flatten
LGBM Random For...
EON Tuner *
Retrain model
Live classification
Model testing
Versioning

Deployment

EON Tuner can be accessed from any project from the left side menu.
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Creating the Impulse — Step-by-Step Guide

With the knowledge about the data and all the building blocks of the
impulse and the project, let's create an ML pipeline that can be
deployed to an edge device.

Step O: Import Data to Your Project

As mentioned in section “Data,” there are several ways to import the
data into the project. To import the “txt" formatted AC motor dataset,
the transformation block created in section “Pre-Processing and
Transformation” will be used.

Navigate to the organization page and select the “Data
Transformation” page.

Figure 14: Configuring a transformation job to import the data

from an organization dataset into the project
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Figure 14 illustrates the configuration options for this step — select the
transformation block created earlier, and the project to import the data to. Press
“Start transformation job.” Once the job is complete, navigate to the project data
page — the samples should be imported.

Step 1: Select All the Blocks That Will be Part of Your Impulse

Once the project has data, it's time to select the blocks that the impulse will
consist of. Figure 15 illustrates what the impulse will look like.

Figure 15: Configured Impulse view
Processing Block

Press “Add a processing block” to open a list of available processing blocks.

For this project, we will select two blocks, so first add a “Spectral Analysis” block,
then press “Add a processing block” once again and add a “Flatten” block.

The list of input axes for each of the processing blocks corresponds to the format
of the data that is in the project dataset — as mentioned before, each sample
contains two axes of AC.
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Learning Block

Press “Add a learning block” to open a list of available processing blocks.

For this project, we will use a LightGBM technique (short for Light
Gradient-Boosting Machine) — a highly efficient gradient boosting algorithm that
typically works well with low dimensional inputs and is more efficient than deep
learning when working with DSP blocks like Flatten and Spectral Features.

Step 2: Generate Features

Both of the selected processing blocks can be configured using relevant
parameters, after which feature generation will happen. This means that all the
raw data samples in the training and testing sets will be put through the selected
processing algorithms, and the generated features will represent these samples as
inputs to the ML algorithm. In this case, LightGBM.

Spectral Features

Navigate to the “Spectral features” tab in the Impulse design section of the
project menu.

There are a lot of parameters that this processing block
takes. The DSP Autotuner makes it easy to automatically
fine tune the processing block parameters. With one click
of a button, the autotuner looks at the entire dataset and
recommends a set of parameters tuned to make the most
out of the dataset.

Figure 16: "Spectral features" processing block page

Industrial Productivity Solutions Guide 23


https://www.edgeimpulse.com/blog/introducing-wavelets-and-dsp-autotuning/

Click “Autotune parameters” to start the autotuner job. After it's completed, press
“Save parameters’ to advance to a feature generation screen.

Press “Generate features’ to initiate the feature generation job.

Figure 17: View of features generated from the "Spectral features" block

Once the job is complete, notice the message “Job completed”’ in the job log
alongside the feature explorer. This visualization illustrates how the samples are
represented in the feature space of the generated parameters.

Flatten

Navigate to the “Flatten” tab in the Impulse design
section of the project menu.

Looking at the raw data window, this block generates
seven features that are statistical measures of the signal,
namely: Average, Minimum, Maximum, RMS, Standard
Deviation, and Kurtosis.
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Figure 18: "Flatten" processing block page
There are no parameters for these features except for the set to be selected hence
there is no Autotuner option. Select all of the features, then press “Save

parameters” to advance to a feature generation screen.

Press “Generate features” to kick off the feature generation job.

Figure 19: View of features generated from the "Flatten" block
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When the job is complete, you will see the message “Job completed” in the job
log, alongside a feature explorer — a visualization that illustrates how the samples
are represented in the feature space of the generated parameters

Step 3: Train the Machine Learning Model

After the features are generated, they are ready to be
used for model training. Navigate to the “LGBM
Random Forest” tab. You'll be presented with a screen
with model hyperparameters that will be used for
training.

It is a good rule of thumb to start with default

parameters and train the model to get a baseline

performance. After that, parameters like the number of

training iterations can be adjusted. EON Tuner can be

used for that, as described in a section above (Tuning with EON tuner).

Press “Start training.” The training log will appear on the left, and once it's
complete, the model's accuracy against a validation set and a confusion matrix will
be displayed. In this case, the model achieved 95.6% accuracy across the whole
validation set. Some classes are recognized better than others, which is reflected in
different accuracies per class in the confusion matrix.

This is the first measure of the model performance that can be considered. Already
now it's possible to reason about how to improve the model performance — for
example, if one class performs much worse than all the others, it might mean that
it's underrepresented in the training set. In this case, it might be a good idea to
collect more samples of this class to balance the dataset better.

The next step is model testing.
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Figure 20: View of "LGBM" learn block page after the model training is completed

Step 4: Test the Machine Learning Model

To test the model, navigate to the “Model testing” tab. It will present a set of
samples from the original dataset that was set aside and not involved with the
training — this can offer a sense of how the model will perform once deployed.
After training the model, new samples can be continuously added to the training
set. For instance, if additional experimental runs are conducted on a test device
and the data is uploaded directly to the training set, those samples will promptly

appear on this page. Subsequently, the trained model can be tested against these
newly added samples.

Industrial Productivity Solutions Guide 27



Figure 21: View of "Model testing" page after the testing is completed

Deploying the Impulse — Putting it All to the Edge

After the impulse is created and the model performance is satisfactory — it is time
to deploy it to the device.

There are numerous deployment options, depending on the goal and target.
The most flexible one is a C++ library.

This option is available in the dropdown menu in the “Deployment” section of
the project.
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Figure 22: Deployment options dropdown at "Deployment” page of the project

After selecting it, clicking “Build” will start the library generation process. The Edge
Impulse platform will generate an archive that contains our C++ SDK and
configuration of the impulse, including a highly optimized model.

This library can be included directly in a firmware project (e.g., Zephyr, plain Linux,
FreeRTOS, etc.). The SDK comes in the form of non-compiled source code and is
available to reuse and adjust all parts in the firmware project as needed.

To make things easy, Edge Impulse offers a set of open-source model firmware
projects for several target systems, including but not limited to Linux and Zephyr.
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Prerequisites

The following sections describe how to deploy an impulse to a Linux machine
using the example-standalone-inferencing-linux project. This project can be used
to compile for any Linux-based target, including a simple computer. The easiest
way to follow the steps is from a Linux machine.

However, as described above, the impulse can be deployed to numerous other
target devices, including MCUs that Zephyr RTOS supports.

To test the impulse on such a device (e.g., Nordic nRF5340 DK), use the
example-standalone-inferencing-zephyr repository and follow the “Running your
impulse locally (Zephyr)" guide in the Edge Impulse documentation portal.

The same model files that are acquired from the platform using the “C++ library”
deployment option are used to build any target project (i.e., model-parameters,
tflite-model, and edge-impulse-sdk folders — described further in this section).

EON Compiler

The Edge Optimized Neural (EON) compiler is a powerful tool developed by Edge
Impulse designed to optimize and effectively run neural networks with reduced
RAM and flash usage, all while maintaining accuracy comparable to TensorFlow
Lite for Microcontrollers. The EON Compiler incorporates a proprietary compiler
that compiles and optimizes neural networks to C++, eliminating complex code,
significantly reducing device resource utilization, and saving inference time.

Key Benefits of Enabling EON Compiler:

25-55% less RAM

35% less flash

Same accuracy as TFLite
Faster inference

Download the C++ library and prepare the application

First, clone the standalone Linux repository. The application repository contains

all the necessary infrastructure to build and run an application on a Linux
machine, namely five applications: audio.cop, camera.cpp, collect.cpp, eim.cpp,
and custom.cpp. A more detailed description of each of them can be found in
README.md — for now, we will focus on the custom.cpp.
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This code contains the logic to read an input file — for example containing the raw
features as they come from a sensor. This example code is useful to quickly test
what kind of results the model will generate on the device for any given input.

Next, unzip the archive generated after the build is complete — it should contain
the following three folders: model-parameters, tflite-model, and
edge-impulse-sdk.

Place these folders in the root of the repository. The file structure should look the
following way:

~ EXAMPLE-STANDALONE-INFERENCING-LINUX [} BT O &
> P build
> edge-impulse-sdk
> IE inc
> ingestion-sdk-c S
> I source
tensorflow-lite
tflite
tflite-model
third_party
tidl-rt
e utils

¢ .gitignore

¢ .gitmodules
build-opencv-linux.sh
build-opencv-mac.sh
K features-class7.txt
B3 LICENSE

C&d Makefile

© README.md

Figure 23: Directory structure of the example-standalone repository

after adding C++ library acquired from the platform deployment

Every time it is necessary to test another model or a new version of the same
model downloaded from the platform, delete these three folders and replace
them with the new ones.
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Build and Test the Application

After everything is in place, it is time to build the project. There are numerous
architectures available to build the application. Detailed build instructions with all
the parameters are described in the repository README.md. For standard desktop
Linux, a simple command can be used, namely:

example-standalone-inferencing-linux on ¥ master [!?]
- APP_CUSTOM=1 make -j ~nproc™ [}

This will create a binary executable “./build/custom” that contains the necessary
parts from our SDK as well as the code for the DSP blocks and the model created
in the platform. Additional build options and flags are described in the repository
README.

To test the inference, we need to have a sample of raw data. Navigate to the
project page in the platform, open the page of either of the DSP blocks, and select
some sample on the top right, for example, a sample from Class 7.

Click the “Copy” icon next to the “Raw features” pane. Next, in the root of the app

repository, create a file called “features-class7.txt” and paste the copied 199800 floating
point numbers in that file.

Figure 24: Acquiring raw features of a sample from the "Spectral features" processing block

Industrial Productivity Solutions Guide 32


https://github.com/edgeimpulse/example-standalone-inferencing-linux/blob/master/README.md

From the root of the repository, run the compiled binary, passing the .txt file as
input, as shown below. Now the resulting pre-processed features array (outputs
of the DSP block) and the model’s confidence for each class, alongside time
measurements, are visible for each stage of the impulse:

example-standalone-inferencing-linux on ¥ master [!?] via @base
+ build/custom features-class7.txt
Features (8 ms.): ©.998265 ©.007953 -1.49970@ 7.771976 58.886593 1.383018 -0.405614 @.
391694 -0.636127 -0.121417 -0.669746 -0.526612 -0.709357 -0.733772 -0.762411 -0.791245
-0.824493 -0.861216 -0.901668 -0.947285 -@.996@59 -1.05@112 -1.10989@ -1.175086 -1.24
9730 -1.321470 -1.412610 -1.507216 -1.620430 -1.580738 -1.890473 -1.523187 -2.266463 -
1.503542 -2.686627 -1.516952 -2.731098 -1.559850 -2.770667 -1.631899 -2.436920 -1.7381
95 -2.148041 -1.884124 -1.969891 -1.911861 -1.856735 -1.818225 -1.789497 -1.770461 -1.
759593 -1.756564 -1.761426 -1.774501 -1.795380 -1.823284 -1.860869 -1.986858 -1.9630888
-2.033115 -2.112726 -2.046961 -2.330124 -1.938513 -2.657937 -1.872221 -3.029419 -1.84
0387 -3.031240 @.997511 @.004379 -1.50@359 7.873979 60.005020 0.362070 -0.419784 -0.65
4157 -8.957128 -1.099327 -1.20539@ -1.292397 -1.359538 -1.419788 -1.475357 -1.525527 -
1.573317 -1.620576 -1.669361 -1.719659 -1.769460 -1.824118 -1.880286 -1.94@517 -2.0234
40 -2.048874 -2.12247@ -2.203468 -2.280187 -2.357839 -2.438747 -2.520064 -2.597731 -2.
539857 -2.695756 -2.558097 -2.739831 -2.600260 -2.780784 -2.669243 -2.768857 -2.733423
-2.695602 -2.660168 -2.63103@ -2.598196 -2.5722@3 -2.555846 -2.538806 -2.531569 -2.52
5798 -2.529477 -2.535406 -2.546891 -2.563246 -2.586028 -2.611861 -2.646406 -2.681561 -
2.726405 -2.770532 -2.822382 -2.877910 -2.933686 -2.987903 -2.908446 -3.037740 -2.8824
06 -3.040673 0.010954 -2.783200 2.889200 1.994232 1.994202 0.032621 -1.497599 0.086460
-2.779700 2.893300 1.993682 1.991808 -0.024252 -1.493808
Running impulse...
Predictions (time: @ ms.):
classl: ©.017982

classi@: 9.917982
classii: 9.017663
class2: @.017684
class3: @.066523
class4: @.103487
class5: @.017382
class6: @.017680
class7: @.684447
class8: 0.019721

class9: 0.019447

run_classifier returned: @ (DSP 8 ms., Classification @ ms., Anomaly @ ms.)

Begin output

[0.01798, ©.01798, 0.01766, 0.01768, ©.06652, 0.10349, 0.01738, 0.01768, 0.68445, 0.01
972, ©.01945]

Figure 25: Output of a compiled executable performing
inference over the previously extracted raw features

Figure 24 on the previous page illustrates the output of the compiled executable
that performs inference over the raw features extracted in the previous step. First,
it prints the processed features array — the combined output of the “Spectral
Features” and “Flatten” blocks. It then shows which confidence the model assigns
to each of the 11 classes for this given sample. The highest confidence (0.684) was
assigned to class 7, meaning that the model classified the sample it was provided
as class 7. This is in line with the real label of the sample we provided it with.
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The build processes, the toolchains utilized, and the core application logic may
vary depending on the hardware target. However, the fundamental concept
remains consistent: The dependency-free C++ code exported from the Edge
Impulse platform's project can be easily integrated into any firmware project and
called through several API calls.

Automation

Developing ML applications is an iterative procedure. As the experiment matures
and more data is collected, keeping track of all the steps necessary to transform
the data to the format for use in the current use case can become cumbersome.

Edge Impulse provides a capability to build automated Data Pipelines — a
predefined set of steps that can be triggered based on events (for example,
when new data is added to the S3 storage), time period (e.g., once every week),
or manually.

One can import datasets from existing cloud storage buckets, automate and
schedule the imports, label the new data, retrain the model, automatically
schedule a deployment task, and many more automation scenarios.

Figure 26 illustrates an example of applying automated pipelines in an
end-to-end architecture that can be applied in the development of an
ML-enabled industrial appliance.

Figure 26: An example end-to-end automated ML flow set up in Edge Impulse
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Below are the instructions to create two pipelines:
- One for fetching, transforming, and importing the new data from an S3
bucket to a project dataset
- And the other to retrain the model with the updated dataset and then
create a new C++ deployment package

Automating Data Import and Transformation — Organization
Data Pipeline

In the “Data’” section a transformation block was introduced that takes the data in
the format of the open sensorless AC motor failures dataset and converts it into

JSON format of Edge Impulse. It wasused
to transform the AC data in the S3 bucket - --© peinel-Organization DataImportand Transform ___
and store it either in an Organization ' " " ‘
Dataset or directly in the project.

‘ New Data Uploaded

Now, it is time to set up a pipeline that will
perform the same set of actions but :
automatically as soon as new data ; [—W

. s3 !
appears in your S3 bucket. . bucket 1
L. -
e \
Figure 27 illustrates an example of such ' Every 2days 1
. . . . ' 1 B
a pipeline from an architectural point : -
; ; ’ o
of view. N~ - ’ Organizational Dataset 1
! - "Bronze" dataset
(any data format)
: Transformation
X block 1
: Project
Organizational Dataset 2 Dataset
"Silver" / "Gold" dataset
X (Converted format, Project 1

cleaned data)

Figure 27: Example architecture of organization
data import and transform pipeline
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Step 1 — Copy the
Transformation Job as a
Pipeline Step

Navigate to the “Data
Transformation” tab in your
organization, select the “Create
Job” pane on top, and fill in the
parameters of the job.

Select the transformation block
that was uploaded to the
organization earlier, and give the
job a name. Now, instead of
running this job directly, click
“Copy as pipeline step.” This will
copy a JSON-encoded job
descriptor in the buffer.

Figure 28: Configuring a transformation job

and copying it as a pipeline step

Step 2 — Create the Automatic Pipeline

Navigate to the “Data Pipelines” tab on the organization page. Press “+ Add new
pipeline” and paste the pipeline step from the previous point between the square
brackets. Fill in the name and the description of the transform job, select a project
that this pipeline will course the data in, and optionally a second dataset in the
Edge Impulse organization where the transformed data is stored (called “SILVER
dataset in this example”).

Set the interval at which this pipeline will be automatically re-run (in this example,
it is set to 2 days).

Press “Add pipeline” — after this, the pipeline will launch for the first time, and the
“Active pipelines” progression will be in view. It should be clear when the next time
this pipeline will run based on the parameters now specified.
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Figure 29: Copying the transformation job JSON to a pipeline

Figure 30: Configured pipeline view after a successful run
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Automating Model
Retraining and Deployment

The pipeline created will ensure that
the project dataset is always up to
date with the organizational data.

The next step is to amend it with
another pipeline on the project
level. As new data gets added, the
pipeline smoothly manages the
entire impulse lifecycle from start
to finish:

- It recreates DSP features for
an updated dataset and
retrains the model

- It retrains and versions the
retrained model, keeping
track of the model's evolution
over time

- It also constructs a new C++
library deployment, ensuring
that the updated model is
efficiently integrated into the
target device of choice

Figure 31: Example architecture of automated Project train and deploy pipeline

' Pipeline 2 - Project Train and Deploy

F ______________________________________________

New Data From Pipeline 1

Project
Dataset
Project 1
- TN
’ - \
Every 2 days 1\
! <...-----"ﬁegenerate DSP 1'eature"§""---...>
Y / with new data
~ 4
- -

Notify about new
r - model
1 performance

<::::I:N Retrain the ML model >

Store project
version

Regenerate C++
deployment library

This approach allows to close the loop and automate the last mile of the
end-to-end Edge ML flow — from data ingestion all the way to optimized edge

library creation.

Follow the steps below to configure this automated data pipeline:

Industrial Productivity Solutions Guide 38



Step 1 — Navigate to Data Source Configuration in the Project

Click “+ Add new data source” and select “Don’t import data.” The reason for this
selection is that the data in the project is already updated by the previous pipeline.

himim Naman Aea { Tndocteial Calidinne Coidal  AC Marar Caole DNakactinn cameennm e

= Step 1: Configure new data source
You can automatically add data to your project from your cloud provider. This sync runs periodically, or you
can trigger a sync from your own pipeline or application.

Where does your data live?

A storage bucket in the cloud

Amazon S3, Google Cloud Storage, or other cloud providers that are S3 compatible.

oL
Organizational dataset
One place to store, transform and sync all your data. Only lists non-clinical datasets.

Upload portal

Upload portals are a secure way to let external parties upload data to your datasets.

[ 2 |
2

Transformation block

Transformation blocks let you combine, transform and import data in any form.

| [2
2

© Don'timportdata

Skip importing data automatically, just set up actions for this project.

Next, set up actions

Figure 32: Configuring a data source for a project

Step 2 — Configure Pipeline Steps

T e T T e T T e ———

a n d I nte rva I < Step 4: Actions to run in this pipeline I
t
H H H Recreate data explorer

Se | eCt t h e p rO.J eCt a Ct I O n S t h at WI | | be The data explorer gives you a one-look view of your dataset, letting you quickly label unknown data. If

. . 1 you enable this you'll also get an email with a screenshot of the data explorer whenever there's new 1)
automatically performed every time the data. |

. . .. . Retrain model |

pipeline is invoked. Configure the e, wi retrainyour model with the same impuls.fyou eable thisyou'l fo gt an emailwith [

the new validation and test set accuracy.

pipeline interval. All the parameters can
be changed at a later point. Press
“Create pipeline.”

Create new version

Store all data, configuration, intermediate results and final models.

Create new deployment
Builds a new library or binary with your updated model. Requires 'Retrain model' to also be enabled. I

Ci+ library v

How often do you want to run this pipeline?

Daily

Optional: configure a webhook

You can enter a webhook URL here which will receive a notification whenever a step in this pipeline runs.

Create pipeline
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Figure 33: Configuring a pipeline for the project

Collaboration

Collaboration and reproducibility are essential pillars of impactful product
development and maintenance. Edge Impulse offers a unified environment
where both embedded and ML teams can work together. It supports the
deployment of trained models directly onto resource-constrained embedded
devices.

To add collaborators, press the icon in the “Collaborators” pane on the project
dashboard and enter a username or an email address of a person to add. This
feature ensures that the ML models are integrated smoothly into the embedded
system, eliminating potential integration challenges and fostering collaboration
between the two teams.

Figure 34: Adding a collaborator to the project
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Additionally, by documenting the origin of the dataset, data processing steps, and
transformations within your project’'s README, Edge Impulse fosters reproducible
engineering practices, allowing your peers to replicate and validate your findings.

Press “Edit README" in the “About this project” pane on the project dashboard to
Ccreate a description.

Summary

Edge Impulse’'s components are designed to address the different stages of a
typical ML pipeline. The arrangement of these components reflects the common
process of data collection, data cleaning/ transformation, feature extraction, model
training, testing, and deployment.

By mirroring the standard stages of the ML pipeline, Edge Impulse ensures users
have all the tools they need at each stage. This integrated approach enables teams
or anyone, whether an expert or a beginner, to build and deploy ML models
seamlessly.

The “glue” that connects all these components together in Edge Impulse is its
unified software platform. This allows users to manage each stage of the
machine learning workflow right from data ingestion to model deployment,
making it faster and easier than ever to get to market with Edge Al.

All the components are organized in a cohesive manner and tightly integrated into
the platform’s user interface. For example, data gathered and processed in one
stage of the workflow is seamlessly available for the next, and so on. Additionally,
Edge Impulse provides APIs and SDKs for integrating its platform with other tools
and systems. This enables users to customize their workflows and use external
tools when necessary.

The real power of Edge Impulse lies in its modular and flexible architecture.
Users can modify and iterate over an impulse design, data, and model as often as
needed until achieving a satisfactory result.
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F.A.Q.

What are the minimum hardware requirements to run the Edge Impulse
inferencing library on my embedded device?

The minimum hardware requirements for the embedded device depend on the
use case, anything from a Cortex-MO+ for vibration analysis to Cortex-M4F for
audio, Cortex-M7 for image classification to Cortex-A for object detection in video.

What frameworks does Edge Impulse use to train the machine learning
models?

We use a wide variety of tools, depending on the machine learning model. For
neural networks, we typically use TensorFlow and Keras. For object detection
models we use TensorFlow with Google's Object Detection API, and for 'classic'
non-neural network machine learning algorithms, we mainly use sklearn. For
neural networks, you can see (and modify) the Keras code by selecting “Switch to
expert mode” in the block context menu.

Another big part of Edge Impulse is the processing blocks, which can be used for
data cleansing or data processing to extract important features before passing it
to a machine learning model. The source code for these processing blocks can be
found on GitHub: edgeimpulse/processing-blocks (and one can build your own
processing blocks as well).

What engine does Edge Impulse use to compile the Impulse?

It depends on the hardware.

For general-purpose MCUs, we typically use EON Compiler with TFLite Micro
kernels (including hardware optimization, e.g. via CMSIS-NN, ESP-NN).
On Linux, if you run the Impulse on the CPU, we use TensorFlow Lite.

For accelerators, we use a wide variety of other runtimes, e.g., hardcoded network
in silicon for Syntiant, custom SNN-based inference engine for Brainchip Akida,
DRP-AIl for Renesas RZV2L, etc.
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Is there a downside to enabling the EON Compiler?

The EON Compiler compiles your neural networks to optimized C++ source code,
which is then compiled into your application. This is great if you need the lowest
RAM and ROM possible (EON typically uses 30-50% less memory than TensorFlow
Lite), but you also lose some flexibility to update your neural networks in the field
— as it is now part of your firmware.

By disabling EON, we place the full neural network (architecture and weights) into
ROM and load it on demand.

Can | use a model that has been trained elsewhere in Edge Impulse?

Yes. Bringing your own model (BYOM) feature was designed for this.

How does the Feature Explorer visualize data that has more than three
dimensions?

Edge Impulse uses UMAP (a dimensionality reduction algorithm) to project high
dimensionality input data into a 3-dimensional space. This even works for
extremely high dimensionality data such as images.

What is the typical power consumption of the Impulse running on my
device?

Simple answer: To get an indication of time per inference, we show performance
metrics in every DSP and ML block in the Studio. Multiply this by the active power
consumption of your MCU to get an indication of power cost per inference.

A more complicated answer: It depends. Normal techniques to conserve power
still apply to ML, so try to do as little as possible (do you need to classify every
second, or can you do it once a minute?), be smart about when to run inference
(can there be an external trigger like a motion sensor before you run inference on
a camera?), and collect data in a lower power mode (don't run at full speed when
sampling low-resolution data, and see if your sensor can use an interrupt to wake
your MCU — rather than polling).

Also see Analyze Power Consumption in Embedded ML Solutions.
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What is the .eim model format for Edge Impulse for Linux?

See the extensive documentation page on our documentation portal.

How is the labeling of the data performed?

Using the Edge Impulse Studio data acquisition tools (like the serial daemon or
data forwarder), you can collect data samples manually with a predefined label. If
you have a dataset that was collected outside of Edge Impulse, you can upload
your dataset using the Edge Impulse CLI, data ingestion API, web uploader,
enterprise data storage bucket tools or enterprise upload portals. You can then
utilize the Edge Impulse Studio to split up your data into labeled chunks, crop your
data samples, and more to create high quality machine learning datasets.
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