
Choosing a
Vertical SaaS
Tech Stack

The Fractal
Guide to

Q1 2022 FRACTALSOFTWARE.COM

The job of a CTO is multifaceted and involves a combination of both managerial and

engineering skills. They must identify and hire talented programmers, structure their

engineering department, create a timeline for their product roadmap, manage the

quality of their code, and ensure that the engineering choices they make today won’t

negatively impact their ability to expand and refine their product in the future.

One of the earliest decisions a CTO makes is selecting a tech stack, which will be an

important factor in who they hire and how they build. For many engineers

transitioning to a CTO role, choosing a tech stack is simple: They use the

technologies they’re most familiar with. This can be a useful heuristic, but choosing

a tech stack is not a decision that should be made lightly. CTOs should carefully

consider the tradeoffs of selecting a given technology and have a clear

understanding of how this choice may affect their company.

This guide is designed to help new CTOs weigh their options for key elements in

their tech stack including frameworks, databases, server providers, and component

libraries. It draws upon insights from vertical SaaS CTOs at companies ranging from

pre-Series A startups to late-stage unicorns. While Fractal provides

recommendations for each category in the stack, it’s ultimately up to the CTO to

decide which technologies best suit the needs of their company, engineering team,

and customers.

Introduction

01

Before we dive into the primary features of a vertical SaaS tech stack, it is worth

considering the five principles that should inform how you think about your tech

stack. These are not inviolable rules. Instead, they are a framework for thinking

about how technologies can affect your engineering organization. They can be used

to simplify the process of selecting technologies for each layer of your tech stack.

If you are transitioning into a CTO role after working as an engineer in a consumer-

facing software company you are accustomed to building for scale. Consumer

products aim for virality, which requires engineering decisions that are robust

enough to handle hypergrowth.

For vertical B2B SaaS startups, simplicity means choosing infrastructure and

technologies appropriate for the scale of the business, and only adding complexity

as the need arises. Microservices, caches, asynchronous message queues, and

distributed databases are all powerful tools to scale an application, but they often

come at a cost of developer velocity and code complexity. While vertical SaaS

businesses grow quickly, their request loads aren’t nearly at the level of a

Five Principles for a
Robust Vertical Tech
Stack

1. Keep it simple

02

consumer-facing application. As such, a clear need should be present before you

use tools that can create drag on velocity.

Early in a company's life, a lot of the work is around discovery: the founders and

early employees are learning about their target customer's business workflows and

how to model that in code. This often requires rewriting a lot of the software as that

understanding is refined, and having fewer moving parts makes everything easier. It

allows for more engineering time to be spent on product and feature development,

and less on maintaining and supporting infrastructure.

Another benefit of simplifying your tech stack is rapid engineer onboarding. This is

critical during the earliest days of your company when you’re racing to launch your

MVP before your runway evaporates. The less time engineers need to get up to

speed on your tech, the more time they can spend building your product. It also

helps you avoid the need for specialist engineers. In the beginning of your company,

engineers who can work across the stack will deliver the most value for your limited

employee budget.

Keep in mind that a simple tech stack will allow for more complexity in the future. If

you launch with complex tech, it can be difficult to change course down the line if or

when you need different solutions. Simplify to stay nimble.

Engineering specialization is directly correlated to the growth of your startup. As you

begin to scale, you will need to hire engineers who primarily or solely work on the

front end, DevOps, and so on. But in the beginning, you should strive to empower

2. Everyone Contributes Everywhere

03

 generalist engineers to contribute across the tech stack. In practice, this means

minimizing the number of languages and technologies you are using as much as

possible. It will make your organization faster and more resilient. If there’s only one

engineer who can contribute to a certain layer of your stack, this creates a risk to

your company if that employee leaves or needs to focus their contributions on other

layers. You can avoid this liability by ensuring that all early engineers can contribute

across your stack.

As CTO of a newly minted vertical SaaS startup, your goal should be getting your

MVP to market as soon as possible. You need real-world user data to refine your

product and land more customers. This means you should optimize your stack for

iteration speed. The idea is to reduce friction to the point where you can deploy

fresh code several times per day and quickly respond to feedback from early users.

There are multiple ways to optimize a tech stack for iteration speed (e.g., embracing

infrastructure-as-code and CI/CD) that will be covered in greater detail below.

Launching a vertical SaaS startup doesn’t require reinventing the wheel. You should

leverage established frameworks for building and designing SaaS platforms

whenever you can. This means you should use off-the-shelf solutions wherever

possible, whether it’s component libraries, cloud services, or hosting. Both open

source and marketplace libraries are your friend. When you use pre-built tech, that

3. Optimize for Speed of Iteration

4. Use Off-the-Shelf Tech

04

Most startups will encounter unexpected challenges that require engineers to get

scrappy and deviate from best practices. But in general, your engineering

organization will benefit from adopting a culture where things are done the right way

the first time—even if it comes at a slight cost to speed. The definition of best

practices may vary from startup to startup and it’s up to the CTO to decide what it

means for their organization. Still, there are some universal best practices like local

development, code reviews, fast and automated deployments, simple database

migrations, and robust testing that are common to all successful startups. By

adopting these best practices early, you will build a disciplined engineering team

and save yourself a lot of wasted time in the future.

5. Adopt Best Practices Early

05

frees your engineers to spend most of their time writing code that creates

differentiating value.

Joel
Gottsegen
Qualia CTO and co-founder

One Piece
of Advice

CASE STUDY

“Optimize your stack and all of your early

architectural decisions for speed. You want to get

your product off the ground as quickly as possible

and remain agile enough that when you inevitably

find out that what you’re doing is wrong, you can

trash your code and not feel bad about it. So

choose the ones that create an environment

where people can have fun and iterate quickly.”

06

Vertical

Founded

Stage

Prior Experience

Real Estate

2015

Late

Mosaic, DataFox

07

“Semantic UI’s components are really feature complete unlike a lot of frontend
frameworks that are mostly focused on the CSS. With Semantic, it’s not just
about the layouts. It also has a lot of abstracted functionality so there are a lot
of different ways to modify components. When you’re making B2B software,
the less your engineers have to think about design early on the better.”

Frontend

"Blaze is a Meteor tool that allowed us to quickly build a sophisticated and
user-friendly frontend. Although it has fit Qualia's needs well, it probably
doesn't make sense for most CTOs launching a company today unless they've
also committed to the Meteor framework. I'd recommend checking out React
instead, which has become the de facto frontend framework for SaaS
companies over the past few years."

Backend

“We wanted to use something new and modern that was fun to program on.
Meteor was a great recruiting tool early on, but that has faded as the
framework became older. At one point Meteor briefly stopped being officially
supported so I’d recommend using more established tools that have big
communities so you don’t end up holding the bag.”

Database

“MongoDB is paired with Meteor, which is part of why the framework is so cool
and ultimately why we ended up using it.”

A strong vertical SaaS tech stack is based on the five general principles outlined

above, but the actual technologies deployed will be highly context dependent. The

goal of every tech stack is to enable functionality that allows a company to serve

their customers, which means the different workflow needs and user profiles of a

given industry should ultimately drive technological decisions. For example,

accounting for mobile capabilities is important in industries like construction where

a lot of users work in the field, but may be less important in the legal industry where

a lot of the workflow occurs in front of a desktop. Another common example is

choosing HIPAA compliant tools for healthcare SaaS to enable more stringent data

protection standards compared to industries that don’t handle sensitive patient

data.

The important thing when choosing a vertical SaaS tech stack is to deeply

understand your industry and the workflows of the people who will be using your

software. This means spending a lot of time with your advisors and potential

customers to learn about how they work during the early days of your company. This

will help you make intentional decisions about your tech stack that will drive

engineering success while meeting the needs of users as your company grows.

The tooling recommendations made below are based on the experience of dozens

of CTOs who have launched their vertical SaaS companies with Fractal’s support.

These technologies may not meet the unique needs of your startup, but they offer a

useful reference for how to think about a particular layer of your stack and the

tradeoffs involved in choosing a given technology.

The Vertical SaaS
Tech Stack

08

The frontend language or framework for a vertical SaaS platform should be

optimized for build speed, usability, and aesthetics. We strongly recommend CTOs

use React with an existing component library such as Material UI or Ant Design.

While we believe that good aesthetics and user interface principles are an essential

part of a successful SaaS application, B2B applications don't have to be as visually

distinct as consumer facing apps, especially in their early years. Although CTOs may

opt for other frameworks such as Angular or Vue, the 2021 Stack Overflow annual

survey of more than 80,000 developers found that React is by far the most popular

frontend framework, with roughly 40% of respondents using React versus just 23%

for Angular and 19% for Vue.

On top of this, you may want to consider using meta-frameworks such as NextJS to

further simplify and accelerate your pace of development. These meta-frameworks

are built on top of React and are tightly integrated with platforms like Vercel, Netlify,

and AWS, which makes it easier for developers to test, deploy, and iterate new code.

Frontend Languages
and Frameworks

09 1 · HTTPS://INSIGHTS.STACKOVERFLOW.COM/SURVEY/2021

CASE STUDY

10

CTO of Tradewing

Vertical

Founded

Stage

Prior Experience

Industry Associations

2019

Growth

Facebook, Adobe

Doron
Roberts

One Piece
of Advice

“Do the normalest thing possible.”

11

Frontend

“Everything is written in TypeScript. I was this close to ditching it in favor of
vanilla JavaScript and that would’ve been a catastrophe. I love TypeScript, it’s
been a huge benefit to us and plays nicely with GraphQL.”

Backend

“If I had a lot of experience with DevOps, I probably would have taken a few
days to get AWS set up the way I wanted to in the beginning. But because of
my limited knowledge in the area, it was really attractive to deploy our
application in a few minutes. It’s pretty amazing how fast you can get it up and
running.”

Database

API

“Don’t let your lack of understanding of your domain leak into your database.
The only time I could really see a document database being a real benefit is for
a prototype application. You’re going to rebuild it from scratch when you
launch anyway.”

“GraphQL is powerful for a lot of reasons. The two that have been the most
beneficial are that you can declare your GQL schema once but query it in a
myriad of ways from the client without making any API or backend changes,
and the ability to do static type-checking against the API. The biggest
downsides versus REST have been that the backend permissioning layer is
less straightforward, failure to use the Dataloader caching and batching
abstraction leads to horrific backend performance, and it’s more difficult to
mock API responses in frontend testing suites such as Cypress.”

The backend handles all the business logic and will to a large

degree determine whether your application can manage the

different user types, business objects (e.g., accounts or inventory),

and rules governing their interactions. Using React for your

frontend can simplify the selection of backend technologies

because it makes it easier to use JavaScript frameworks like

Next.js or Node.js across both their client and server sides. But

opting for a JS frontend doesn’t preclude using other languages

for the backend. The language and frameworks you choose for

your backend should ultimately be based on the workflow needs

of your users.

For example, a CTO trying to decide whether they want to use

Python or JS as the basis for their backend may consider some of

the following factors. If machine learning is a prominent part of a

company’s product roadmap, Python may be the preferable

choice due to its status as the leading language for ML. This can

future-proof a platform’s backend by making it easier to

implement features requiring heavy data analysis after the MVP

launch. The tradeoff is it may make it more challenging for early

engineers to contribute across the codebase because there are

multiple languages involved.

Regardless of the backend language you choose, you will benefit

A Note on Mobile Development

For companies that will launch with
a mobile MVP or plan to develop a
mobile app shortly after launch, the
balance tilts toward using JavaScript
for everything because it makes it
easier to use a mobile framework
like React Native. Although you can’t
directly port a React web app to
mobile, React Native uses the same
principles as its web-based
counterpart. This makes it easier
for engineers to contribute across
the entire codebase and also creates
opportunities for building libraries
that can work on both web and
mobile. React Native is not without
its downsides—it is notoriously
inconsistent across iOS and Android
—and you may want to consider
alternative frameworks like Flutter,
which is based on the Dart language
created by Google. Bringing a new
language into your stack may create
friction and you need to carefully
consider whether the benefits of
the framework outweigh its costs
in terms of development speed.

Backend Languages
and Frameworks

12 2 · HTTPS://MADNIGHT.GITHUB.IO/GITHUT/#/PULL_REQUESTS/2021/2

from the developer community’s familiarity with both JavaScript and Python. Based

on GitHub pull requests, JavaScript is the most-used language in the world and

Python is a close second.2 This means you will have a large talent pool to draw from

when you hire your first engineers, and these engineers will be able to quickly begin

contributing to your company’s codebase. Since both JavaScript and Python are

generally considered to be easy-to-use languages, even engineers who may not

already be familiar with the language will be able to quickly learn its unique

characteristics. Given the importance of development speed and iteration for early

stage SaaS companies, you should give a lot of weight to the familiarity of the

languages and technologies they add to your tech stack.

13

Daniel
Blank
CTO at Stride

One Piece
of Advice

CASE STUDY

“CTOs need to strike a balance between choosing

technologies that are modern enough to do what

you need, but have been around long enough to

stand the test of time. You don’t want to pick

tools that are ancient, but you also don’t want

something that has only had a few years of

testing in the market.”

14

Vertical

Founded

Stage

Prior Experience

Physical Therapy

2021

Growth

Blackstone

15

“One of the major criticisms of Material UI is that every site uses it so your site
ends up looking like every other site. But for us that was an advantage because
all of our competitors’ sites look like they were made 20 years ago. We want our
site to look modern and familiar.”

Frontend

“We briefly looked at Vue, but ultimately decided you can’t really go wrong with
React. There are so many component libraries and tools, not to mention the
market for engineers is so much bigger. It was really just a no brainer.”

API

Backend

“Django has all the features you need to make an application HIPAA compliant,
plus user authentication, and an entire admin site so you can interact with your
database right out of the box. Plus, there are 20 years of StackOverflow history
so there is a 0% chance you will encounter a problem that someone else hasn’t
encountered before.”

“We're a healthcare company and that means you are going to be the stewards
of some very sensitive patient data. Aptible is a healthcare-focused platform-
as-a-service that basically handles all the database requirements for you so
you can focus on writing code.”

Database

“Our database decision ultimately came down to Postgres or MongoDB. You
can be just as successful building with either model, but I decided that
Postgres was the good solution because of my familiarity with it and its
compatibility with Django.”

“The Django REST framework allows us to build a really robust, secure, and fast
API on top of Django. It will also make it easier for us to build a mobile
application down the road.”

When it comes to choosing a database, the main decision you

must make is whether to use a relational or a non-relational

document database. Many CTOs with a background in

developing consumer-facing software are familiar with relational

database management systems such as PostgreSQL and

MySQL, which remain by far the most widely used type of

database.3 But relational database structures may not be the

optimal choice for vertical SaaS applications, especially during

the early years of the company. The reason is that relational

databases are designed for highly structured data. They work well

when engineers already know the type of data their application

will be fielding and need relationships between data fields to be

perfectly consistent and non-redundant (e.g., in payment

applications). Instead, you should consider launching your MVP

with MongoDB, Firestore, or other NoSQL document database

programs.

Document databases store their data in JSON files that sidestep

the constraints of the tabular format used in relational databases.

It adheres to the principle of tech stack simplicity insofar as it

removes the need for querying databases in SQL since the

database is queried with the programming language used in the

application. Although it usually makes sense to use a document

database in your stack, it’s important that you understand the

tradeoffs involved with this decision.

The schema-less structure of a document database is particularly

A Note on Mobile Development

An important consideration when
building a vertical SaaS tech stack
is ensuring that the technologies
make it easy to test the application
codebase. Buggy MVPs are a fact
of life, but if you prioritize testing
quickly and testing often you will
remove friction around your
product launch.

There are an incredible range of
testing tools to choose from and
the choice you make will ultimately
depend on the technologies and
languages in your stack. When
it comes to testing, the benefits
of using a single language like
JavaScript across the entire
tech stack are clear. This enables
developers to use tools like Cypress
that are specifically designed for
end-to-end testing of applications
built with JS. If multiple languages
are used across the stack, this will
likely mean using a suite of testing
tools as well. For example, Jest can
be used to test a frontend built with
JS and a framework like Robot can
be used for automation testing on
a backend built on Python.

Databases

16 3 · HTTPS://DB-ENGINES.COM/EN/RANKING_CATEGORIES

useful for early-stage companies that are still in the process of learning their

customer domain. Your understanding of the way businesses operate in your

industry will become more sophisticated over time and if you build a relational

database around your initial understanding of the domain, you may find that

structure woefully inadequate in the future. It can be painful to overhaul a relational

database once you have already launched your MVP, but the dynamism of a

document database enables the data formats to evolve with your understanding of

your customers’ needs.

A further benefit of document databases is their inherent scalability. Whereas

scaling relational databases involves using increasingly powerful computers with

more CPUs and more memory, document databases can scale by spreading data

across computing clusters. They were built for the cloud era and allow applications

to scale dynamically based on user load. While this isn’t as big of a concern for

vertical SaaS apps compared to consumer-facing apps, it is an important

consideration for early-stage companies that need their application to work for

several years before they hire engineers dedicated to database management.

Of course, document databases have their drawbacks. One area of particular

concern is the security of NoSQL databases. Both SQL and NoSQL databases are

vulnerable to injection attacks where attackers hijack user input to run malicious

queries on a database. Since NoSQL database queries are written in the

application’s programming language, this means attackers can execute commands

in both the database and the broader application, which enables DDoS attacks and

loss of server control. There are plenty of open source tools to help you ensure your

document databases are secure before your application goes into production (e.g.,

NoSQLMap and Mongoaudit). But if you opt for a NoSQL database, you should

exercise extra precaution to ensure that your application is secure. For example, if

the application is written in JavaScript and JavaScript database queries are required

for the application, it’s critical that you build a process to validate all user inputs to

17

reduce the risks from this common NoSQL attack vector. MongoDB offers many

advanced security features such as encrypting data at rest and in transit, as do

other document database systems. You should familiarize yourself with all the

security best practices for your chosen system and ensure they are properly

implemented before shipping your MVP.

With all the document database options available, it can be challenging to narrow

your decision to a particular system. One suggestion is to start with Firestore, a

cloud-hosted document database system maintained by Google that is optimized

for rapid application prototyping. Firestore is a serverless architecture that makes it

easy to scale an application and comes with native SDKs for iOS and Android, which

simplifies the process of building out a mobile application. It is also essentially

agnostic to the application’s programming language. If your application uses a

relational database, many SQL systems pair well with Prisma, an object-relational

mapping tool that makes it easier to understand and manipulate your app’s data

models.

18

Evan
Vandegriff
CTO at Greenspark

One Piece
of Advice

CASE STUDY

“Keep an eye on the features you want to build

and look for out-of-the-box features that fit your

needs. It will really minimize the number of

migrations and changes to the infrastructure

you’ll need to make down the road.”

19

Vertical

Founded

Stage

Prior Experience

Metal Recycling

2021

Growth

Sevenrooms, Verst

20

“Material UI gives you all these components like drop downs or date pickers
right out of the box so you’re not reinventing the wheel for everything that a
modern platform needs. It made it easy for new developers to get up to speed
and jump in.”

Frontend

“I started with the Create React app because you can spin up an entire working
frontend app for you with like one line from the terminal. With that as a basis we
could make personal touches and small changes around it.”

API

Backend

“We went with plain JavaScript on the frontend and backend because we didn’t
want to limit our options when we started hiring. A lot of people who are earlier
in their careers have focused more on full stack JS solutions so we were able to
find more candidates and get them up to speed faster.

Database

“A lot of my early direction was what is the simplest way to get up and running
quickly? AWS is really easy to spin up and start playing around with. You don’t
have to spend significant engineering resources to maintain core
functionalities when you spin up these serverless containers that scale
automatically.”

“From the beginning I was leaning heavily toward a fully managed AWS
solution. With AWS API gateway there ended up being some tradeoffs in
getting people up to speed with the whole security framework and figuring out
how everything fit together, but we’re pretty pumped about the ease of use
from going this route.”

Many vertical SaaS CTOs choose to launch their MVP with a serverless architecture

so that machine resources can be allocated on demand. This is an optimal strategy

because it reduces the amount of time that you and your engineers need to spend

configuring a server. The less time engineers need to spend on low value activities

like server configuration, the more time they can spend building features that

differentiate the application and drive value to your company.

Today, cloud hosting is effectively a commodity and the provider that you choose

isn’t likely to have a major impact on the success of their business. Amazon Web

Services, Google Cloud, and Microsoft’s Azure are all equally good options, and you

should choose the provider you are most familiar with that also fits your budget. In

certain cases, it may make sense to look beyond the “Big 3” cloud providers to

companies that provide servers that are more uniquely tailored to the needs of your

application. For example, Vercel’s serverless product is uniquely suited for apps

using Next.js as their frontend framework because Vercel was the company that

built Next. When it comes to choosing a server provider, the important thing is to

make the decision quickly and move on to more important engineering challenges.

Don’t waste time splitting hairs about the unique features of each provider because

for the first few years of your company’s life, these differentiating qualities are

unlikely to matter.

Other infrastructure decisions like email and billing APIs are similarly

straightforward. In each case, you should select the simplest option. When it comes

Infrastructure:
Servers, Billing, Email

21

22

 to billing, payments, and subscriptions that usually means using Stripe. There are

more options for an email API and you should select the one that is easiest to use.

Mailgun, Elastic Email, and SendGrid all support the most popular programming

languages and will all work equally well for an early-stage vertical SaaS company.

Aaron
Hammond
CTO at August

One Piece
of Advice

CASE STUDY

"Pick tools that you're familiar with that allow

you to move quickly, but take your time with

metaprogramming."

23

Vertical

Founded

Stage

Prior Experience

School Health

2021

Early

Stripe

24

Frontend

“We’re using React with TypeScript, which has been very helpful for us. We
have effectively no tests on the front end and yet we have a very low defect rate
because of the typing. Plus GraphQL plays really nicely with TypeScript.”

“Ant Design is the most comprehensive open source component library I’ve
ever seen, but it was a pretty big gamble because it is developed and
maintained by Ant Financial, the Chinese tech behemoth. A lot of the source
code comments are in Chinese, but fortunately someone developed a plugin
that will automatically translate it.”

Backend

“We’re using Rails only on the backend, which is a non-traditional way of using
it. One of the motivations for selecting Rails was the ecosystem around it. Even
if we’re not making use of all it’s able to provide, it enables us to use all the
other tools that work with rails. For example because of Rails we got our admin
tooling, user authentication and mail templates basically for free.”

API

“GraphQL handles our data binding between the frontend and backend. The
flexibility of the query pattern has been helpful as we iterate on the API, and the
Apollo client has removed the need for any kind of centralized state
management on the frontend. The Ruby GraphQL gem also has robust support
for extensions, so we’ve been able to metaprogram away routine platform
tasks like wiring query params or exports.”

Database

“We have a data domain that is exactly suited for a document database
because we have a very low cardinality set of entities that are in a few different
collections. Plus, the fact that Atlas, the cloud provider for MongoDB, maintains
everything means we haven’t had to think about databases at all, really. It’s all
turnkey.”

Fractal partners with exceptional engineers to give them everything they need to

launch their own vertical SaaS company. As a CTO candidate in our Entrepreneur-

in-Residence program, you’ll get to choose a deeply researched company idea,

partner with a vetted cofounder, and receive the capital you need to launch your

business on Day 1. You’ll join a community of dozens of other vertical SaaS CTOs

and receive on-going support from Fractal’s team of in-house experts who will share

their insights from building some of the world’s most successful vertical SaaS

businesses.

Ready to Launch Your
Own Vertical SaaS
Company?

fractalsoftware.com/engineering

Learn more about how Fractal can help you
launch your own engineering-led startup at:

	Cover
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

