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�Epidemiology of Diabetic 
Retinopathy

Over the last four decades the number of people 
living with diabetes has more than quadrupled 
from 108 million in 1980 to an estimated 422 
million in 2014. At the same time diabetes preva-
lence among adults has almost doubled to 8.5% 
[1]. Future projections estimate that, by 2035, 
592 million people will have diabetes, with the 
largest rise in low- and middle-income regions 
[2]. There is no doubt that diabetes constitutes a 
significant problem for global health and wellbe-
ing. It is a disease that is prevalent all over the 
world, in the affluent, resource rich countries and 
much poorer developing countries. Diabetes can 
cause a number of significant complications, 
each of them associated with significant morbid-
ity, requiring different, highly qualified medical 
personnel to diagnose and treat them. This poses 
a challenge for the local health services which 
often struggle with either delivering or funding 
the appropriate care.

Diabetic retinopathy is one of the major com-
plications of diabetes, estimated to be the leading 
cause of blindness among working-age adults 
globally [3].

Prevalence of DR and of proliferative DR 
(pDR) varies between type 1 and 2 diabetes and 
among the different regions of the world. 
Prevalence of DR among type 2 diabetics is 
reported between 20 and 40% in most studies. In 
type 1 diabetes, in Europe and the USA, reported 
prevalence vary widely between reports ranging 
from 36.5 to 93.6% [3]. Of those with DR an 
approximate one third may have vision threaten-
ing DR with either proliferative DR or diabetic 
macular edema (DME). Overall DR prevalence is 
higher among Western communities as compared 
to Asian regions [3]. Singapore is a notable 
exception to this, with a much higher prevalence 
of DR, but comparable to developed Western 
countries.

It appears incidence of DR among diabetics is 
also increasing in some regions. A study based in 
Spain found yearly incidence of DR to increase 
by almost 1% over an 8-year lifespan, from 
8.09% in 2007 to 8.99% in 2014, with incidence 
of DME also increasing [4]. The increasing 
worldwide population, coupled with increasing 
prevalence of diabetes and increased incidence of 
DR all lead to increasing number of patients with 
ocular complications of diabetes.

Adding to the global burden of pDR and 
DME, these appear to be prognostic of other 
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diabetes complications like nephropathy, periph-
eral neuropathy and cardiovascular events [3].

�Conventional Screening Initiatives 
of DR: Telemedicine

There have been many DR screening initiatives 
throughout the world with varying degrees of 
coverage and longevity. Nevertheless, only a few 
countries were able to successfully establish and 
continue DR screening on national level, most 
prominently—UK and Singapore. It appears 
such programme is also functioning within 
Denmark, however very little information regard-
ing it is available in English.

�United Kingdom

Each country within the UK established their 
own national screening programme. The specific 
protocols and grading methods vary, however all 
are based on digital, colour fundus photography. 
The programmes cover all diabetics over the age 
of 12 years old with vision of at least light per-
ception in one eye.

�England

The NHS Diabetic Eye Screening Programme 
(NDESP) is a continuation of an English screen-
ing programme set up in 2006. Patients are 
screened on annual visits, with two fundus 
images per eye—one macula- and one disc-
centred. Images are taken after mydriasis. These 
images are later digitally sent to one of central-
ised grading centres. The sheer scale of piloting 
and implementing such an initiative is impres-
sive, in years 2015–2016 the programme invited 
more than 2.5 million diabetics to attend screen-
ing with an uptake of 82.8% [5]. It also gives us 
an important insight into the epidemiology of DR 
in the local population. Between 2015 and 2016 
screening resulted in just under 8000 urgent 

referrals with suspected proliferative disease and 
over 52,000 referrals for suspected maculopathy 
or pre-proliferative diabetic retinopathy, with an 
overall rate of DR of 2.8%.

The aforementioned screening programme 
was expected to reduce the number of people 
considered legally blind in England from 4200 to 
less than 1000. It appears this goal has been 
accomplished with a 2014 report showing DR is 
no longer the leading cause of certifiable blind-
ness in England and Wales for the first time in 
50 years [5].

�Wales

The Diabetic Retinopathy Screening Service for 
Wales (DRSSW), established in 2002, is a mobile 
screening service. Similarly to the English pro-
gramme, two fundus images are taken per eye. 
Patients with sight-threatening DR are referred to 
a hospital-based retinal service. 30 screening 
teams serve 220 locations within Wales, achiev-
ing patient over of about 80%.

�Scotland

Scotland started its DR screening in 2006. 
Qualifying patients are identified automatically 
using the Scottish Care Information-Diabetes 
Collaboration database. Screening is based on a 
single macula-centred image per eye, with mydri-
asis as required. Images are later sent to grading 
centres. Thanks to automatic patient selection, 
patient coverage is above 99%.

�Northern Ireland

The Northern Ireland Diabetic Retinopathy 
Screening Programme (NIDRSP) was estab-
lished in 2002. Its similar in functioning to the 
welsh programme DRSSW. Patients are referred 
to the programme by their GPs, with trained 
readers grading the photographs.
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�Ireland

DR screening was first identified as a key goal in 
2008, but only introduced in 2013 under the 
name Diabetic RetinaScreen. The Irish pro-
gramme screens diabetics 12 and older. Diabetic 
RetinaScreen supervises both annual fundus 
image-based screening and DR treatment and 
consists of both stationary and mobile 
community-based screening centers. The grading 
follows the English system closely both in terms 
of the grading matrix and the quality assurance 
protocols. According to the latest report, screen-
ing uptake is around 67% and rose considerably 
since the screening was first introduced [6].

�Singapore

Singapore began widespread DR screening almost 
three decades ago in 1991. At that time Polaroid 
non-mydriatic fundus photography was chosen, as 
images could be taken by trained staff, instead of 
ophthalmologists. Images were reviewed by the 
local hospital-based ophthalmologist. At the time it 
was the first and only nationwide DR screening pro-
gramme. The Singaporean screening initiative was 
revived in an updated version reflecting the techno-
logical advancements and possibilities and is now 
known as Singapore Integrated Diabetic Retinopathy 
Programme (SIDRP). Based on primary care clinics 
equipped with retinal cameras and specialised read-
ing centres employing trained graders the pro-
gramme aims for a result within 24 h of screening.

Cost effectiveness analysis has shown that this 
telemedicine-based model generated $173 of cost 
savings per patient compared to the previous 
screening model where family physicians graded 
the images themselves after special training [7].

�Local Screening Initiatives

Other than the established national screening 
programmes, there have been a large number of 
smaller-scaled local screening initiatives all other 

the world. Some of those are similarly long-
standing projects that control their population 
yearly, while most were discontinued or singular 
screening efforts. Even though so many screen-
ing projects were attempted, only the few afore-
mentioned countries were able to implement 
nationwide screening, further highlighting the 
difficulty of such undertaking.

�Automated Screening for Diabetic 
Retinopathy

The idea of adopting a computer programme in 
assessing fundus images for DR is certainly not 
new. First report, that we were able to find, of 
such endeavour was published in 1996 by Gardner 
and colleagues. Almost 25 years ago, the authors, 
established a neural network trained on 147 dia-
betic and 32 normal fundus images and aimed to 
train it to recognise particular features of an 
image—vessels, haemorrhages and exudates. Due 
to the many constraints, including computational 
capacity, each images was divided into small 
squares 20 or 30 pixels wide and later assessed by 
an ophthalmologist as containing either vessels, 
exudates, haemorrhages and micro-aneurysms or 
normal retina without vessels [8].

Another study done in 2000 describes a mixed 
technique where algorithms designed to enhance 
round features in an image were used to select for 
micro-aneurysms in a fundus image. This was 
later assessed by a neural network to determine 
the significance of the round feature extracted. 
This resulted in a sensible detection rate for 
images containing microaneurysms (81%) as 
compared to the opinion of a clinical research fel-
low [9].

Several studies explored the subject in the early 
2000s, without the use of neural networks, relying 
on various pre-established image-analysis tech-
niques, such as automated detection of anatomical 
landmarks in fundus images (optic disc, blood ves-
sels, fovea etc.) coupled with specifically designed 
algorithms for detection of DR features. Among 
those, first three reports of a system, later known 
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as Retinalyze and discussed in further sections, 
were published showing relatively good sensitivi-
ties of 71–93% and specificities of 72–86%, these 
were based on small sample sizes reaching 137 
patients in the largest study [10, 11].

All of those studies were done in the pre-
digitisation era, meaning images, in the form of 
slides, taken from a fundus camera had to be 
scanned by hand. This was done using a slide 
reader or scanner to achieve a workable digital ver-
sion of the image. The process was time consuming 
and required specialized equipment, and additional 
processing steps introduced potential image arte-
facts and loss of quality. The lack of centralised 
databases and digital storage of fundus images 
meant training and verification images were hard to 
acquire. As a consequence, most studies suffered 
from low number of images used, as compared to 
modern models using tens of thousands of fundus 
images to establish and validate a system.

Even though at that time automated screening 
was severely limited from a technical standpoint, 
a number of people already attempted devising 
suitable screening methods, recognising the 
potential of new technology to enhance or substi-
tute human-based grading.

�Deep Learning Algorithms

In subsequent years, with increasing digitisation, 
new ways of approaching the subject of auto-
mated image analysis were made possible. Up 
until 2010s experts designed algorithms for detec-
tion of specific features of DR like micro aneu-
rysms or haemorrhages. In deep learning the 
software is presented with a fundus image as a 
whole and a pre-specified result for that image. 
Over the course of analysing many such images, 
often thousands, it starts being able to distinguish 
between images with different results. What sepa-
rates one result from another does not have to be 
explicitly specified by its designers. The advent of 
deep learning-based DR detection revealed a sig-
nificant improvement in the accuracy of newly 
developed or improved systems. Abramoff and 
colleagues reported how the introduction of deep 
learning techniques, allowed a significant 
improvement to the already established, classi-
cally designed, automated DR software—the 

Iowa Detection Program. Based on the publicly 
available set of fundus images with/without DR—
the Messidor-2 dataset, the sensitivity improved 
from 94.4% to 96.8% and specificity from a con-
fidence interval of 55.7%–63% to 87% [12]. For 
the Iowa Detection Program, deep learning fea-
tures were added on top of already existing algo-
rithms, many other initiatives attempted to 
establish entirely new deep-based learning DR 
detection software. Establishing automated or 
semi-automated screening, with the use of AI, 
will require striking a careful balance between 
sensitivity and specificity, imaging modality, 
gradeability of the images, all of which will need 
to be weighed against the potential cost. The cost-
benefit balance is not universal and will vary 
depending on the relationship of those parameters 
with the relevant population characteristics, such 
as the prevalence of DR and sight-threatening 
DR, availability of treatment, cost and availability 
of trained staff etc. A recent paper explores the 
potential approaches to making a health economic 
assessment and safety analysis of implementing 
novel AI DR solutions into widespread screening 
[13]. Deep learning DR detection has been found 
to be cost-effective in developed countries, like 
Singapore and United Kingdom. However, there 
are no published studies looking into the feasibil-
ity of implementing AI DR screening in countries 
without a robust teleophthalmology screening 
programme setup beforehand and other resource-
limited settings Table 11.1 [13].

Described further are several significant initia-
tives for AI-based diabetic retinopathy detection.

�IDx-DR

IDx-DR is combined DR screening solution that 
incorporates the aforementioned DR screening 
algorithm with image quality assessment and 
feedback system. Submission of images is done 
using the IDx-DR client, which is a stand-alone 
piece of software. The IDx-DR client features a 
system for resubmission of images deemed to be 
of too low quality. The threshold for a positive 
result has been set as ‘more than mild’ diabetic 
retinopathy according to the ICDR grading scale 
or signs of diabetic macular edema. IDx-DR 
offers one additional result level of vision threat-
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ening DR, indicative of a suspicion of more 
advanced, possibly proliferative DR. Screening is 
based on four fundus images per patient, two 
from each eye, one macula- and one disc-centred 

and all images need to be submitted for a result to 
be produced. The algorithm is able to cope with 
some quality loss utilizing the overlap of the two 
image fields (Fig. 11.1).

Fig. 11.1  IDx-DR image submission screen. Printed with Permission © IDx Technologies

Table 11.1  The list of deep learning - based DR screening algorithms available at the end of 2020

Name of the 
software

Country of 
origin Classification level Comments

IDx-DR USA Per patient
rDR/no rDR

First AI autonomous diagnostic device to be FDA 
approved.
Class IIa medical device in EU

Eyeart USA Per patient
rDR/no rDR

Second AI software to receive FDA approval. Approved by 
Canadian FDA
Class IIa medical device in EU

RetmarkerDR Portugal DR/no DR
Microaneurysm 
turnover rate

Previously used in various screening initiatives in Portugal
Class IIa medical device in EU

SELENA + Singapore Per patient
rDR/no rDR

Scheduled to be implemented into national DR screening 
in Singapore

Google 
algorithm

USA Per picture
rDR/no rDR

Studies surrounding real-world implementation based in 
India, Thailand. Currently no official software package 
available outside of research studies

MediosAI India Per patient
rDR/no rDR

Integrated into an offline smartphone app to be paired with 
the Remidio fundus-on-phone device

Verisee Taiwan rDR/no rDR Relatively new algorithm, recently approved by the 
Taiwanese FDA-equivalent government body

Pegasus United 
Kingdom

rDR/no rDR Operated by the Orbis non-profit organisation

RetCAD Netherlands rDR/no rDR Detects referable AMD as well
Retinalyze Denmark Per image, retinal 

changes/no changes
Detects AMD related changes as well, also offers an 
automated glaucoma screening module

OphtAI France Per patient rDR/no 
rDR and DR grade

Also detects glaucoma and AMD
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Although on the front-end, the user is pre-
sented with a screening result in one of the four 
categories—no DR, mtmDR, vision threatening 
DR and insufficient quality, on the back-end 
IDx-DR produces a numerical value representing 
its assessment of likelihood of mtmDR. Currently 
it uses defined cut-offs to sort the patient into an 
appropriate category. Theoretically, this means 
that the IDx-DR output could be adjusted to max-
imise either sensitivity or specificity depending 
on the needs of a given screening initiative.

IDx-DR is the first autonomous diagnostic 
software and one of the very first AI-based soft-
ware’s in medicine to receive Federal Drug and 
Administration (FDA) approval. In a self-titled 
pivotal trial, IDx-DR software was studied in a 
real-world application. A little under 900 patients 
were screened using IDx-DR coupled with 
Topcon NW-400 automatic fundus camera in a 
primary care setting. The staff operating the 
IDx-DR client and taking the fundus images were 
not IDx-DR or clinical trial staff, but pre-existing 
employees of those clinics who underwent stan-
dardised training. This is important as in a sce-
nario of large-scale DR screening deployment 
specialised staff, say in ophthalmology imaging 
may be harder to produce and acquire that the 
necessary technical equipment. In previous trials 
of IDx-DR and other AI algorithms the perfor-
mance of the AI was compared to human grading 
with the same information available, which was 
mostly the fundus images. Sometimes to 
strengthen the human grading standard against 
which the AI was compared, several persons 
graded each image with a consensus grading that 
followed. This trial took an even more stringent, 
extreme approach—giving the human graders a 
lot more available information, while keeping the 
AI limited to the four fundus images taken by 
relatively inexperienced staff, albeit with an auto-
matic fundus camera and selective mydriasis. 
This was compared to grading done on four 
stereoscopic, widefield fundus images taken by 
professional technicians and graded by an estab-
lished, independent reading center—the 
Wisconsin Fundus Photograph Reading Center. 
Presence of clinically significant diabetic macu-
lar edema (CSME) was additionally established 
based on macula OCT imaging, which of course 

the algorithm had no access to. With odds stacked 
against it, the AI was still able to exceed all end-
points set before the trial began, endpoints at sen-
sitivity of 87.2% (>85%), specificity of 90.7% 
(>82.5%), and imageability rate of 96.1% (among 
patients deemed imageable by the reading cen-
ter). The landmark FDA decision to allow 
IDx-DR to operate within the United States was 
largely based on the results of this study [14]. In 
US, according to the FDA approved use, IDx-DR 
needs to be coupled with the Topcon NW-400 
non-mydriatic fundus camera.

Previously to this study, were a number of 
studies published on IDx-DR, though none as 
significant. Notably its performance against the 
Messidor-2 dataset was significantly higher than 
in the above described trial, with 96.8% sensitiv-
ity and specificity of 87%. In another real-life 
study, performed in Netherlands, 1410 patients 
were screened within the Dutch diabetic care sys-
tem. Three experts graded the resultant images 
according to ICDR and EURODIAB grading 
scales, resulting in significantly different algo-
rithm performance depending on the scale used. 
For EURODIAB IDx-DR sensitivity and speci-
ficity was 91% and 84%, whereas for ICDR they 
were 68% and 86% respectively. The signifi-
cantly lower performance when compared to 
ICDR criteria could all be attributed to a single 
aspect of ICDR—judging a single haemorrhage 
as at least moderate DR, the authors note that 
should this be changed the sensitivity changes 
from 68% to 96.1% [15].

This is a great illustration of how important 
grading criteria are. A number of differing crite-
ria have been used in different studies so far, 
Eurodiab, ICDR, ETDRS, some studies use local 
grading guidelines, with each being one of the 
most significant parts affecting the outcome and 
final performance indicators published. The first 
question and most important question in estab-
lishing DR screening is ‘what is the screening 
trying to accomplish?’. In the simplest form the 
aim of a DR screening initiative should be finding 
those patients, who will require a specialty oph-
thalmology visit before the next screening epi-
sode. This seems to hold true for established 
traditional screening programmes in developed 
countries. However, depending on the region and 
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resources available this can change. In a setting 
of poorer countries, with many-fold less ophthal-
mologists and low availability of treatment, one 
might want to put the bar for referral higher. 
Nevertheless, the scale used to measure and qual-
ify the retinal changes present, needs to be 
backed-up by the risk of DR progression and risk 
to vision at a given level (Fig. 11.2).

�Retinalyze

Retinalyze is a DR screening system developed 
in Denmark. As mentioned, it is one of the very 
first published automated DR analysis programs, 
with initial reports of its efficacy starting in 2003, 
based on scanned 35 mm film fundus images. It 
features a web-based interface, with a per-image 
result. Images are submitted through the inter-
face, utilising a secure internet protocol. Results 
are presented in terms of number/severity of 
detected retinal changes as either no changes, 
mild retinal changes, or severe changes. An inter-
esting feature of Retinalyze is being able to see 
an annotated image with the detected retinal 
changes highlighted, therefore being able to get a 
glimpse into what led to the algorithms final 

result. Since its introduction it went through a 
period of inactivity and was reintroduced in 2013, 
with modern era machine learning improve-
ments. It is certified with the Conformité 
Européenne (CE) level I under the previous regu-
lations. Retinalyze additionally offers screening 
towards AMD and glaucoma, from the same fun-
dus photos.

�RetmarkerDR

Retmarker is a DR detection system originating in 
Portugal. It is one of the first AI screening tools 
successfully implemented into real life screening, 
not just for the purpose of a clinical trial. The cen-
tral region of Portugal has a longstanding DR 
screening programme established back in 2001. In 
2011 RetmarkerDR has been implemented into the 
already existing, human-grader based DR screen-
ing programme. This screening is based on several 
teams of photographers equipped with mobile fun-
dus cameras. These screening units rotate between 
different healthcare providers covering their whole 
route over the course of 12 months and then repeat-
ing this cycle. Patients with diabetes and no history 
of DR treatment are invited for screening at a local 
health centre. These images are later collated and 
sent on a weekly basis to a centralized reading cen-
tre (Fig. 11.3).

The Retmarker software forms the first line of 
analysis for those submitted images. Images in 
which the algorithm detects signs of DR, or pro-
gression of DR in case of repeat screening, are 
sent for human grading, similarly with images 
deemed low quality by the algorithm. In this case 
Retmarker is used in the preliminary ‘disease’ or 
‘no disease’ sorting, which then specifies the 
need for human grader assessment of the ‘dis-
ease’ sub-group. For quality assurance a certain 
number of DR negative results are sent for human 
analysis as well, with the human graders blinded 
to the AI decision.

Such implementation of an AI algorithm to 
detect DR relies on very high sensitivity, as false 
negatives will rarely be discovered, but can com-
promise on specificity. As long as it eliminates a 
significant number of images from human analy-
sis, without missing cases of advanced disease, 

Fig. 11.2  IDX-DR result page. Printed with Permission 
© IDx Technologies
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the process will likely be resource effective, as 
even a specificity of 50% means almost halving 
the human grader work.

A noteworthy feature that distinguishes 
Retmarker from other algorithms is its ability to 
take previous screenings into account. By com-
paring the fundus images taken on a previous 
screening visit, the system is able to track retinal 
changes and determine if progression occurred. 
This leads to another interesting avenue—track-
ing microaneurysms. Microaneurysms disappear 
over time and new ones form. Tracking those 
changes using traditional, human-grader based, 
methods is very labour intensive, but is virtually 
instantaneous for an AI. The rate of microaneu-
rysms appearing and disappearing was named 
microaneurysm turn-over rate. A number of stud-
ies have been published showing this parameter 
is a promising predictive factor for future DR 
progression [9, 16–18]. Although these studies 
consistently linked increased MA turn-over to 
increased chance of DR, to establish a clinically 
significant and actionable link between lesion 
turn-over and diabetic retinopathy progression 
would require further work (Fig. 11.4).

In addition to being introduced as a part of 
screening in Portugal, RetmarkerDR was also 
studied in one of the only head-to-head compari-

sons of AI DR systems ever published [19]. This 
study, done for the purpose of assessing a poten-
tial introduction of autonomous DR detection 
software into the existing English DR screening 
programme, invited AI DR software makers to 
submit their algorithm for the testing. Three sys-
tems participated in the testing, RetmarkerDR, 
Eyeart and iGradingM.  Because of technical 
issues iGradingM, a DR detection software born 
in Scotland, was disqualified from the study and 
its parent company has since dissolved. The study 
involved images taken from consecutive, routine 
screening visits of over 20,000 patients to an 
English DR screening centre, which were previ-
ously graded as per the national screening proto-
col were processed by the systems, and any 
discrepancies in grading between the AI and 
human-graders were sent to an external reading 
centre. Both the efficiency in detecting DR, refer-
able DR and cost-effectiveness were studied [19]. 
The study concluded with the following sensitiv-
ity levels:

•	 EyeArt 94.7% for any retinopathy, 93.8% for 
referable retinopathy (human graded as either 
ungradable, maculopathy, preproliferative, or 
proliferative), 99.6% for proliferative 
retinopathy;

Fig. 11.3  RetmarkerDR exam manager
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•	 Retmarker 73.0% for any retinopathy, 85.0% 
for referable retinopathy, 97.9% for prolifera-
tive retinopathy.

Specificity:

•	 20% for Eyeart for any DR
•	 52.3% for Retmarker for any DR

Although the sensitivity levels are much 
higher for Eyeart, this is equalised by the reverse 
situation happening in specificity. Of note are 
the remarkably low specificity levels for both 
systems as compared to more recent reports and 
estimates of those and other software. It is 
important to realise that although the study was 
originally published in 2016, it started some 
years prior, during that period of time machine-
learning and image analysis methods were 
improved dramatically and one can assume the 
algorithms established for this period of time 
improved as well.

�Eyeart

Eyeart, the second software compared for the 
purpose of the British screening programme, as 

described above is being developed by Eyenuk 
Inc., based in Los Angeles, USA. It additionally 
offers another product—Eyemark for tracking 
DR progression which, similarly to Retmarker, 
offers MA turnover measurements. Eyeart is able 
to take in a variable number of pictures per 
patient, making it suitable for various screening 
scenarios without further adjustments needed, in 
contrast to some of its competitors. This solves a 
number of issues, as was illustrated by IDx-DR, 
which had to be specially modified to accept the 
single image per eye Messidor-2 dataset, instead 
of its typical input of two images.

Eyeart had been verified retrospectively on a 
database of 78,685 patient encounters (total of 
627,490 images) with a refer/no refer result and 
a final screening sensitivity of 91.7% and speci-
ficity of 91.5%, as compared to the Eye Picture 
Archive Communication System (EyePACS) 
graders, however only the abstract for the study 
was available on-line. It appears Eyeart has 
decided to pursue this line of enquiry further 
with publishing of a full study, done on more 
than 100,000 consecutive patient visits from the 
EyePACS database. A total of 850, 908 images 
were analysed, collected from 404 primary care 
facilities between 2014 and 2015. Patients gen-
erally had eight images taken, four per eye; one 

Fig. 11.4  RetmarkerDR image submission
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image of external eye, and a single macula- 
disc-centred image and an image temporal to 
the disc, though no patient was disqualified 
because of number of images taken or their res-
olution. The images almost evenly split between 
non-mydriatic at 54% and mydriatic at 46%. 
The final results in terms of detecting referable 
DR were 91.3% sensitivity and 91.1% specific-
ity, in line with the previous partial results. 
Sensitivity for detecting higher DR levels that 
are treatable—either severe or proliferative DR 
was 98.5% and 97.1% for detecting CSME (as 
compared to human graders assessing the same 
fundus pictures). The systems accuracy did not 
seem to change depending on mydriasis, with 
98.0% and 98.8% sensitivities for detecting 
treatable DR, in non-mydriatic and mydriatic 
encounters respectively. Only 910 patient 
encounters, less than 1%, were deemed non-
screenable by Eyeart, of those 198 encounters 
were assigned as insufficient for full human 
grading previously. Nevertheless, of those 910 

screening episodes over one third had severe or 
proliferative DR, the authors note that the sys-
tem treats non-screenable patients as positive, 
for the purpose of patient safety [20].

Eyeart analysed the whole cohort of over 
100,000 screening encounters, almost a million 
images in less than 2 full days [20]. Assuming an 
average 30  seconds of grading time per image, 
the same task would take about 7000 work-hours 
or about 4 full time graders working for a whole 
year, showing just how much faster computer 
analysis can be. Of course in the actual screening 
scenario no one is grading thousands of images at 
a time, with a quick result available within min-
utes of the screening being much more satisfac-
tory, but AI can do that too, 24 h a day, every day 
of the year (Figs. 11.5 and 11.6).

Eyeart achieved similar results in terms of 
sensitivity, to the aforementioned UK study look-
ing into AI DR screening viability, though there 
is a very considerable discrepancy in specificity 
between the two studies [19, 21]. As mentioned 

Fig. 11.5  EyeArt result page
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before, these studies were not done in the same 
time-period, and further improvements to the 
system probably account for the increase in its 
accuracy. Indeed, the authors themselves describe 
the improvement that the 1.2 version of Eyeart 
(still based on traditional image analysis tech-
niques) has undergone with the inclusion of mul-
tiple convolutional neural networks.

Eyeart was also measured against the 
Messidor-2 dataset. Referable DR screening sen-
sitivity was 93.8%, specificity of 72.2%. 
Importantly this dataset does not have a pre-
defined result or grading attached to it, therefore 
necessitating a separate set of graders to judge it 
for the standard that the AI is compared against, 
this grading is separate for each study, further 
hampering the ability to directly compare any 
systems involved.

Eyeart has recently published the results of its 
most robust clinical trial to date. The study was 
pre-registered, as with the IDx-DR pivotal trial, 

and comprised of a similar number of patients—893 
patients screened in total. The screening was per-
formed in primary-care clinics with two-field non-
mydriatic fundus photography first and 4-field 
mydriatic imaging second. The study compared 
the ability of Eyeart to detect clinically significant 
DME, moderate non-proliferative DR or higher 
based on the two-field imaging with external read-
ing centre (the Wisconsin Fundus Photograph 
Reading Center, as was used in the IDx-DR trial) 
grading decision using the four wide-field stereo-
scopic images per eye. For non-mydriatic screen-
ing EyeArt’s was shown to have high sensitivity at 
95.5%, good specificity at 86%, and gradeability 
of 87.5%. When dilating patients from the initially 
ungradable group, the systems overall gradeability 
rose to 97.4%, while retaining the same sensitivity 
and a rise in specificity of 0.5% to 86.5%. Although 
this trial did not involve OCT imaging for the 
detection of DME, in all other respects this trial 
appears similar to the IDx-DR clinical trial, with 

Fig. 11.6  EyeArt result page
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similar results in terms of the both systems’ 
accuracy.

Another result, perhaps even more surprising 
than the stellar performance of the AI, was a com-
parison based on a subset of the patients in this 
trial, that have undergone dilated ophthalmoscopy 
after the fundus imaging. A total of 497 patients 
were tested across 10 U.S. clinical centres, with 
some specialty retinal centres and others general 
ophthalmology clinics. This was compared against 
the adjudicated decision of the Wisconsin reading 
center based on the 4 wide-field stereoscopic fun-
dus photography. Although the ophthalmoscope-
based examinations had high specificity of 99.5%, 
this was coupled with an abysmal sensitivity of 
28.1% overall. Even among the retina specialty 
centres the sensitivity rate was only 59.1% [22]. 
This shows that human-based grading, using oph-
thalmoscopy, as one of the tools commonly avail-
able in primary-care clinics, is very unlikely to be 
a sensible screening solution, if even ophthalmolo-
gists struggle with its accuracy.

The most recent study regarding Eyeart was 
done on 30,000 images taken from the English 
DR screening programme and followed a very 
similar protocol and analysis pattern to the only 
comparative study on AI in DR screening [19, 
23]. Images from three different centers were 
graded according to the established national 
screening protocol. Among 30,405 screening epi-
sodes, Eyeart flagged all 462 cases of moderate 
and severe DR. Overall sensitivity for rDR was 
95.7% for rDR and 54% specificity. Although the 
specificity is once again lower than in other stud-
ies, it is still a very significant increase from the 
20% specificity in the previous study [19, 23]. 
The authors concluded that with the introduction 
of such an AI system into the currently estab-
lished national screening protocol replacing the 
primary grader, the overall human grading work-
load could be halved.

�‘Google’ Algorithm

The potential application of new artificial intel-
ligence solutions for analysis of fundus images, 
DR particularly, caught the attention of not only 

smaller, independent teams and companies but 
also industry giants—Google. This is not 
Google’s only foray into medical AI, with teams 
at Google collaborating to find solutions for 
automated analysis of histopathology images 
and other non-image analysis related publica-
tions. A Google inc. sponsored study introducing 
their automated DR screening algorithm was 
published in 2016 by Gulshan and colleagues. To 
develop the algorithm the authors gathered over 
128,000 macula-centered images from patients 
presenting for their diabetic screening in India 
and US.  To validate the resultant algorithm a 
random set of images from the same data source 
was chosen, those images were not used in cre-
ation of the algorithm. The image set for both 
development and validation consisted of mixed 
mydriatic and non-mydriatic photos from sev-
eral different fundus camera models. 
Additionally, the authors tested the algorithm 
against the aforementioned French dataset—
Messidor-2. The algorithm achieved impressive 
results at a sensitivity of 96.1% and specificity of 
93.9% (tuned for high sensitivity) and sensitivity 
of 87.0%, specificity of 98.5% (tuned for speci-
ficity). The respective numbers for Messidor-2 
data-set were 97.5% and 93.4% (high sensitiv-
ity) and 90.3% and 98.1% (high specificity) [24]. 
Although these accuracy results are among the 
highest published, and the sample size is consid-
erable, this study stood out in that it put a lot of 
emphasis on selection of human graders and 
their validation. Initially, for the development of 
the dataset, the study invited 54 US-licensed 
ophthalmologists or ophthalmology trainees at 
last year of residency, with each grading between 
20 and 62,508 images. As a result, each image 
was graded between 3 and 7 times. Final DR sta-
tus and gradeability of the image were set based 
on majority-decision. Graders were sometimes 
shown the images they have previously marked, 
to measure intra-grader reliability, or how often 
given the same image, the grader decides on the 
same result. Sixteen graders went through 
enough volume of images for this to be feasibly 
calculated, and the top 7 or 8 ophthalmologists, 
based on this measure, were chosen to grade all 
the images from the validation datasets. Inter-
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grader reliability was also measured for 26 of the 
ophthalmologists. The mean intra-grader reli-
ability for the 16 graders for referable DR was 
94%, and inter-grader reliability for the 26 grad-
ers was 95.5%.

Even when choosing the most self-consistent 
graders out of several board-certified ophthal-
mologists, the mean agreement rate for referable 
DR images was only 77.7% for the EyePacs-1 
dataset, with complete agreement among all eight 
graders achieved in less than 20% of referable 
DR images. Grader agreement was much better 
for non-referable DR images, with complete 
agreement on 85.1% of the nonreferable cases 
[24]. This highlights just how many caveats; the 
current universally acceptable grading method 
and gold standard of certified human grading can 
have. Out of 16 graders, on average, 4 out of 100 
images were marked differently each time they 
were assessed by the same person. Out of 8 most 
self-consistent graders, only 20% of referable DR 
cases were judged as such by all graders.

Issues surrounding human grading were fur-
ther explored in a subsequent 2018 study [25]. In 
it, authors build up on the previously described 
work by Gulshan in terms of developing an 
improved algorithm, expanding the training data-
set and exploring different presently used grading 
protocols. The authors implemented a solution 
where the software outputs several numbers 
ranging from 0 to 1, each indicating its confi-
dence that the image represents a given severity 
level of DR. This appears to be very similar to the 
back-end solutions implemented by IDx-DR, 
which also output’s its confidence level in the 
result being more than moderate DR, although 
this is not presented to the end-user. This allows 
relatively easy adjustments to the systems 
sensitivity-specificity balance, focusing on either 
of those measures.

This study ended up with three different 
‘grading pools’—EyePacs graders, Certified 
Ophthalmologists and Retinal specialists. 
Additionally, an adjudication protocol was 
introduced in cases of disagreement by the reti-
nal specialists with both asynchronous and live 
adjudication sessions until an agreement was 
reached [25]. This is in contrast to the first work, 

which relied only on majority decision. The new 
algorithm was based on well over 1.5 million 
retinal images, with 3737 images with adjudi-
cated grading used to fine tune the system and 
1958 images used for validation. The validation 
set was graded by three retinal specialists on 
their own, and was repeated later with face-to-
face adjudication of all images between all three 
specialists. Additionally, three separate ophthal-
mologists graded the images on their own. The 
adjudicated grade was set as the gold standard 
for further comparisons.

All of the graders had high specificity—97.5%, 
97.9% and 99.1% for ophthalmologists and 
99.1%, 99.3%, 99.3% for retinal specialists. 
Sensitivities however were much lower with oph-
thalmologists ranging from 75.2% to 76.4% indi-
vidually and 83.8% as majority decision as 
compared to the adjudicated grading [25]. Even 
the majority decision grading of retinal special-
ists showed room for improvement at 88.1% and 
individual sensitivities of 74.6%, 74.6% and 
82.1%. Most cases of discrepancy between the 
majority grading of ophthalmologists and the 
adjudicated result stemmed from missed MAs—
36%; misinterpreted image artefacts that can be 
construed as MAs or small haemorrhages—20%; 
and misclassified haemorrhages—16%.

After implementing the adjudication proce-
dure and fine-tuning the autonomous system it 
achieved accuracy levels comparable to any of 
the retinal specialists or ophthalmologists 
involved [25].

A prospective trial was done to assess the real-
world viability of the algorithm, utilising many 
of the lessons learned from the two above-
described studies [26]. The trial was done in two 
hospitals in India on a total of 3049 diabetics 
attending their appointments in the local general 
ophthalmology and vitreoretinal clinics, as well 
as, telescreening initiatives. During their appoint-
ments macula-centered 40–45 degree fundus 
images were taken mainly with a Forus 3nethra 
camera, a compact, low-cost fundus camera [26]. 
All images were non-mydriatic and were not 
included in further therapeutic decisions for the 
patients, as they carried on with their appoint-
ments. All images were later graded by a non-
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physician trained grader, a retinal specialist. All 
images from taken from one of the two centre, 
997 patients total, also underwent grading by 
three retinal specialists with an adjudication pro-
cess as in the previous study. Additionally, any 
images from the second centre with any discrep-
ancies between any of the graders or algorithm 
output (5-point DR grading and DME status) 
were also adjudicated. The results, in terms of 
human grading accuracy in detecting rDR, were 
largely similar to those in the previous study—
the four human graders had sensitivities between 
73.4% and 88.8%, with specificities between 
83.5 to 98.7%. The algorithm had comparable 
performance, at a sensitivity of 88.9% at the first 
centre and 92.1% at the second centre respective 
specificities of 92.2% and 95.2% [26]. The 
‘Google’ DR algorithm was trained on images 
taken from many different cameras of which only 
0.3% were taken by this specific fundus camera, 
yet it has showed very good performance on 
images taken using it, suggesting the algorithm is 
able to deal with different equipment being used 
to take the images [26]. Although the algorithm 
and its results appears very promising, with good 
accuracy, it does require further work in order to 
be used in a clinical setting, which the authors 
point out themselves. Firstly, as it currently has 
no image quality assessment capabilities, only 
images deemed gradable by the adjudication 
panel were included in this latest study. 
Additionally, as with all other algorithms, their 
place within and the precise protocols of wide-
spread screening and integration into the existing 
clinical workflow or outside of it remains to be 
devised and assessed. This latest study was 
designed specifically for the algorithm not to 
interfere with established clinical set-up.

�SELENA+, Singapore Algorithm

Singapore, one of the very few countries that have 
an established national DR screening programme, 
is also at the forefront of testing deep learning for 
DR detection. Ting and colleagues used images 
from the on-going Singapore National Diabetic 
Retinopathy Screening Program (SIDRP), which 

were additionally graded by two senior non-phy-
sician graders and adjudicated by a senior retinal 
specialist in case of conflicting grading. Overall 
72,610 images were included in the training data-
set, taken from the years 2010–2013, and further 
71,896 from years 2014–2015 were used for the 
primary validation dataset. The system was addi-
tionally validated using images from multi-ethnic 
populations from Singapore, and using images 
taken in screening studies from around the 
world—China, African-American Eye disease 
study (US based), Royal Victoria Eye Hospital 
(Australia), Mexico and University of Hong 
Kong. These studies included between 1052 and 
15,798 images for a total validation dataset of 
112,618 images, more than 56 thousand patients. 
Reference standards varied between the different 
studies, but all included at least two graders, with 
the largest study by image volume (n = 15,798) 
also including retinal specialist arbitration.

For the primary validation, that is the data from 
SIDRP years 2014–2015, the system demon-
strated a sensitivity of 90.5% for detecting refer-
able DR, comparable to professional graders on 
the same dataset at 91.5%, as compared to the final 
retinal specialist arbitration decision. Specificity 
of this solution was 91.6%, lower than that of pro-
fessional graders at 99.3%. Interestingly the sys-
tem proved better at detecting sight-threatening 
DR at 100%, with trained graders rated at only 
88.6%, again, at a cost of the lower specificity. As 
the study included multiple ethnic populations, yet 
was devised only on the basis of SIDRP images, 
the authors analysed if it showed racial or other 
biases. This was made possible by the large racial 
diversity among the validation datasets—Malay, 
Indian, Chinese, White, African-American and 
Hispanic. The algorithm achieved comparable per-
formance in different subgroups of patients by 
race, additionally age, sex, and glycaemic control 
did not affect the accuracy of the algorithm.

�Verisee

Verisee, an algorithm developed in Taiwan, was 
described in a recent paper. The algorithm was 
developed based on single-field images taken 
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previously at the National Taiwan University, 
with a single fundus camera [27]. The images 
were graded by two ophthalmologists undergo-
ing fellowship training, with an experienced reti-
nal specialist employed for adjudication. The 
algorithm was trained on about 37,000 images, 
with 1875 images used for validation. The valida-
tion dataset was not used for training, but was 
taken with the same camera at the same location. 
The algorithm achieved 92.2% specificity and 
89.5% sensitivity for any DR, and 89.2% and 
90.1% for rDR. The algorithm exceeded the sen-
sitivity for detecting rDR achieved by ophthal-
mologists in this study, which was calculated at 
71.1%, and did much better than internal physi-
cians at detecting any DR (64.3% sensitivity, 
71.9% specificity, based on diagnosis available in 
chart records) [27]. Although these results are 
promising, due to the low volume and homogene-
ity of validation dataset, the performance of the 
algorithm in other scenarios remains uncertain. 
Nevertheless, the algorithm has been approved 
by the Taiwanese FDA-equivalent body and is 
scheduled to be implemented into real-world 
screening in Taiwan in the near future.

�RetCAD

A recently published system, developed in the 
Netherlands, allowing for joint detection of DR 
and AMD from fundus images [28]. It is the only 
study to show algorithm’s effectiveness at screen-
ing for both AMD and rDR at the same time. The 
validation dataset was rather small, relative to 
other studies described here, and comprised of 
600 images. Nevertheless the software achieved 
good accuracy and was able to distinguish 
between rDR and referable AMD rather well 
with sensitivity of 90.1% and specificity of 90.6% 
[28]. Unlike the SELENA software, which can 
also detect both AMD and DR, both diseases 
were tested at the same time, instead of testing 
the accuracy against AMD and DR on separate 
data sets [29]. RetCAD was tested against the 
publicly available datasets of Messidor-2, for DR 
detection and Age-Related Eye Disease Study 
dataset for AMD, achieving favourable results. 

However, for all of the above datasets, including 
the development and validation dataset, only 
images of good quality were chosen.

OphtAI

OphtAI is a relatively new entry to the commercial 
AI DR detection market. It originates from a joint 
venture of two French medical IT companies 
Evolucare and ADCIS, it was developed in France 
and possesses a class IIa CE certification. The DR 
algorithm was developed based on a dataset of over 
275,000 eyes from a French medical imaging data-
base [30]. It is mostly a cloud-based service acces-
sible through a web interface, my.ophtai.com, 
which allows between 1 and 6 images per patient 
to be sent for analysis and offers a DR grading 
result in a few seconds along with a confidence 
rating and heatmap of the suspect retinal changes. 
OphtAI is also available as a locally hosted plat-
form, dependent on local regulations. While soft-
ware additionally detects referable DR, diabetic 
macular edema, glaucoma and AMD from fundus 
images, there are plans for the next version to 
detect general eye health in addition to detection 
of over 10 specific pathologies and 27 disease 
signs to expand the number of detected patholo-
gies to over 30. The DR detection algorithm was 
compared against the Messidor-2 dataset with 
very promising results [30, 31]. We would expect 
further publications related to the verification and 
efficacy of this algorithm in the coming years.

�Other AI DR Solutions

The initiatives described so far focused mostly on 
the aspect of image analysis. One of the hurdles 
to go through with their development regarded 
equipment and technique used to take the fundus 
images, and how that might affect the system’s 
diagnostic ability or its image quality detection 
protocols. Use of different fundus cameras by 
many different technicians can introduce a lot of 
variability in picture quality, its resolution or 
sharpness. IDx-DR, for example, is only approved 
for use in US when coupled, not only with a sin-
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gle brand of fundus devices, but with a specific 
fundus camera—the Topcon NW-400. Other ini-
tiatives employ a number of computational tech-
niques to normalize each image to a standard 
deemed appropriate for the system. Another line 
of thinking is that using images from multiple 
fundus cameras in training the algorithm may 
help it ignore the non-relevant, fundus camera-
dependent changes in the images. This strategy 
appears to be working with most developers 
reporting their systems as having no significant 
impact on final accuracy in regards to fundus 
camera used. This issue is particularly important 
in case of low-cost or mobile fundus cameras. 
Introducing DR screening in low-resource 
regions of the world is costly not just in terms of 
grading but also in terms of equipment cost and 
portability, establishing permanent, stationary 
screening points is unlikely to be viable in set-
tings with low population density and low patient 
mobility. Even in developed, wealthy countries, 
wide-spread screening is often done utilising 
mobile screening units, as exemplified by some 
of the UK-based screening strategies. The rapid 
development of AI in diabetic retinopathy did not 
go unnoticed by companies that already function 
in the fundus image field, with companies devel-
oping dedicated AI DR screening solutions for 
their existing fundus imaging hardware.

�DR Detection with the Use of Mobile 
Devices

Another widespread invention of the digital era—
the smartphone, and its relative cheap cost and 
ubiquity appears promising in regards to mobile, 
low-cost screening. In one study, images taken 
Retinal images of 296 patients taken with a smart-
phone-based add-on and software—‘Remidio 
Fundus on phone’ device were analysed by Eyeart 
software. Even though the Eyeart algorithms have 
not been trained on the use of smartphone based 
fundus photography, it achieved sensitivity 99.3% 
for referable DR and 99.1% for sight-threatening 
DR, with specificities of 68.8% and 80.4% respec-
tively [32]. Since that study was done, Remidio 
have developed their own in-house DR analysis 

software, embedded into their current generation 
Fundus on phone devices (Fig. 11.7).

The software side of Remidio’s DR detection 
system was named Medios AI. These results have 
since been replicated in another similar study by V 
and colleagues, where 3-field, dilated retinal 
images taken with the Remidio mobile camera 
were compared to the diagnosis of a vitreoretinal 
speciality resident and specialist based on the same 
pictures. The images were taken by a healthcare 
professional with no experience in using fundus 
cameras, with the offline system achieving simi-
larly high accuracy results [33]. In a similar study 
done on 297 the systems performance was mea-
sured against that of 2 vitreoretinal specialists, with 
final sensitivity and specificity of the AI in detect-
ing referable DR at 98.8% and specificity of 86.7% 
[34]. This was further corroborated by a study 
looking into 900 adult subjects with diabetes in 
India, where five retinal specialists graded images 
taken with the Remidio mobile camera for any DR 
or rDR. This was later compared to the Medios AI 
software running offline on an Iphone 6, a 6-year-
old mobile device that currently costs less than 200 

Fig. 11.7  Remidio FOP device. Printed with permission 
from Remidio
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USD for a refurbished model. Medios AI achieved 
good results with sensitivity and specificity pair for 
any DR of 83.3% and 95.5% and for rDR 93% and 
92.5% [35]. For Medios AI, all studies so far com-
pared AI and grader performance on the same 
source material  - pictures taken with the mobile 
camera. A study similar to that done by IDx-DR 
and Eyeart, where the chosen system is compared 
to diagnosis based on professional, multi-field fun-
dus imaging might provide additional insight and 
comparability of those systems with the mobile 
approach (Fig. 11.8).

The big difference in Remidio’s DR screening 
system, other than implementing it directly into the 
fundus imaging device, is performing the analysis 
entirely offline, without need for internet access. 

Although the access to wireless internet sources is 
spreading all over the world, this can be a hugely 
important factor in screening remote and under-
privileged communities, where internet access is 
sometimes not possible and very often unreliable. 
This approach is picking up steam with more 
mobile, smartphone based or smartphone aided 
fundus imaging solutions being studied and con-
sidered for adoption in DR screening. Smartphones, 
coupled with a compatible mobile fundus camera 
attachment or device provides a low cost, highly 
mobile and highly scalable DR screening solution, 
especially if the analysis is integrated into the 
smartphone itself. A recent study conducted in 
India compared effectiveness of four such devices 
in human based DR grading [36] (Fig. 11.9).

Fig. 11.8  MediosAI Image selection. Printed with per-
mission from MediosAI

Fig. 11.9  MediosAI report. Printed with permission 
from MediosAI
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It appears the company Bosch has also taken a 
similar approach in improving its ‘Bosch Mobile 
Eye Care’ fundus camera and developing an in-
house DR diagnostic algorithm to be imple-
mented within the fundus camera itself. 
Single-field images taken with their camera, 
without pharmacological mydriasis, were anal-
ysed by a convolutional neural network-based AI 
software to deliver a disease/no-disease or insuf-
ficient quality output. The system is cloud based 
and would require internet access. Out of 1128 
eyes studied, 44 (3.9%) were deemed inconclu-
sive by the algorithm, with just 4 out of 568 
patients having images from both eyes of insuf-
ficient quality. The study compared AI’s perfor-
mance with grading based on 7-field stereoscopic, 
mydriatic, ETDRS imaging done on the same 
eye. Bosch DR Algorithm achieved good results 
with sensitivity, specificity, PPV, and NPV rates 
of 91%, 96%, 94%, and 95% respectively [37]. 
However little is known about the grading criteria 
employed in this study, in contrast to other simi-
lar works, it employs purely a disease positive/
negative criteria, rather than the more useful rDR, 
non rDR distinction [37]. Unfortunately no fur-
ther reports of this algorithms effectiveness are 
available at this time.

Even though mobile screening does appear 
very appealing, and as exemplified above the 
results are very promising, it is conceivable that 
the lower image quality obtained when using 
mobile fundus cameras might affect the accuracy 
of the AI system used to grade it. A recent study 
compared the performance of a deep learning 
based DR detection system against a benchmark, 
curated image set, taken with a desktop camera 
against its accuracy with images taken with a 
handheld fundus camera [38]. Although the soft-
ware, dubbed Pegasus, did exceptionally well on 
the curated, desktop dataset with 93.4% and 
94.2% sensitivity and specificity, this did not 
translate to equal detection rate in the handheld 
camera images with a statistically significant 
decrease in accuracy. The parameters for the 
handheld camera dataset were 81.6% sensitivity 
and 81.7% specificity—a drop of more than 10% 
for each of the parameters [38]. Mobile screening 
setups and portable cameras are very attractive 
means for introducing widespread screening. 

However, testing on curated, high quality data 
sets will overestimate the real-world testing accu-
racy. Testing the software should be done in a 
scenario as close to the desired implementation 
as possible, to achieve accuracy metrics that will 
be true to real-life screening.

�New Technologies in Retina 
Imaging and DR Screening

Although most DR screening efforts are directed 
towards analysis of fundus images, there have 
been significant advancements in employing AI 
for analysis of optical coherence tomography 
(OCT). OCT is commonly used in assessing and 
monitoring DR and DME on an individual 
patient basis. Several metrics like central macu-
lar thickness help us establish some objective 
parameters, nevertheless the evaluation of OCT 
scans is still subjective, user-dependent, simi-
larly to evaluating fundus pictures. A further 
development of OCT—OCT angiography 
(OCTA), allows for non-invasive tracing of reti-
nal and choroid vasculature, the role of OCTA 
in common ophthalmic practice is not firmly 
defined, and there are few objective quantifica-
tions possible. First attempts at using OCTA 
data for machine-learning and automated analy-
sis of DR patients have already been made. 
OCTA data from 106 patients with type II dia-
betes and either no DR (n = 23) or mild non pro-
liferative DR (n  =  83) was used to train the 
algorithm to detect DR features from superficial 
and deep retinal maps [39]. Using a combined 
approach of using both layers, the system dem-
onstrated overall accuracy of 94.3%, sensitivity 
of 97.9%, specificity of 87.0%, and an area 
under curve (AUC) of 92.4% [39]. Although the 
relatively high reliability measures are promis-
ing, it is important to note that the validation 
was done on the training subset. Nevertheless, 
the study has shown that OCTA can be subjected 
to deep learning and automated analysis and we 
may very well see more such initiatives in the 
future. The specific computational techniques 
for detecting DR from OCTA have been further 
explored in a recent study comparing different 
neural network approaches to analysing OCTA 
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and their results. The best performing algorithm 
achieved accuracy of 0.90–0.92 [40].

Teaching general practitioners (GPs) to take 
photos with a mobile fundus camera and 
subsequently grade them, might be an alternative 
method of widening access to DR screening, 
without the use of AI or automated systems. A 
recent study looked into training GPs in Sri-
Lanka to take and grade fundus photos taken with 
a mobile camera (Zeiss-Visuscout100®). The 
GPs underwent a training programme delivered 
by two retinologists, however of the nine doctors 
that undertook the training only two with the best 
test grading results were chosen for the study. 
The GPs took and graded non-dilated and subse-
quently mydriatic fundus images, their perfor-
mance was graded against a decision of a retinal 
specialist after performing a dilated fundus 
examination using slit lamp biomicroscopy and 
indirect ophthalmoscopy. Assuming ungradable 
subjects as referable, the two GPs achieved sensi-
tivities for detecting rDR of 85%, 87% with spec-
ificities of 72%, 77% for non-mydriatic screening, 
rising to 89%, 93% specificity and 95%, 96% 
sensitivity after mydriasis. Although, this shows 
that training GPs to screen for rDR is theoreti-
cally feasible and can achieve good diagnostic 
accuracy, both the availability of GPs and their 
ability to take on additional workload is limited. 
In the aforementioned study only the two best 
performing GPs (measured as agreement with the 
retinal specialist on a test image set) were 
included, unlike an automated system the accu-
racy would likely vary between different GP 
graders [41].

Approaching the issues surrounding DR 
screening from a different direction is RetinaRisk, 
a software developed in Iceland. RetinaRisk aims 
to decrease the overall burden of yearly DR 
screening by safely extending the time between 
screening for part of DR population. Although 
not explicitly derived from machine learning, it is 
based on analysis of extensive datasets. The algo-
rithm takes in patients’ parameters, such as gen-
der, age, HbA1c level, DR status, diabetes type 
and duration, and blood pressure level. As a 
result, the algorithm presents a recommended 
time till next screening interval, which may be 
longer than the traditionally accepted yearly 

interval, but may also be shorter, for a subset of 
patients with high risk for developing DR com-
plications. In a recent study based in one 
Norwegian ophthalmic practice between 2014 
and 2019 average screening interval was extended 
to 23 months as compared to 14 month average 
for the control group with fixed screening inter-
vals [42].

�Conclusions

Deep learning DR diagnostic software is cur-
rently a rapidly developing topic. During the last 
decade we have seen the concepts surrounding 
automatic DR screening evolve from few expert-
designed algorithms with varying measures of 
accuracy to a multitude of different approaches 
employing the newest developments in deep 
learning and other fields. We have seen progres-
sively more robust studies emerge, proving the 
diagnostic or decision-support algorithms to be 
accurate and reliable, some basing on millions of 
images, others with particularly rigorous setting 
of their gold-standard. During the last 2 years, a 
number of software packages have been approved 
by regulatory bodies around the world and are 
well on their way to be implemented into wide-
spread screening in the respective countries. 
Following the general worldwide trend, increas-
ing emphasis is being placed on mobile solutions, 
which may prove to be a better fit for resource 
starved regions. Although the body of evidence 
speaking for the various algorithms is quite large 
and constantly increasing, there are significant 
shortcomings in our current study of AI in 
DR.  Virtually all of the current studies looking 
into and measuring DR algorithms are sponsored 
or dependent on the respective algorithm’s’ com-
pany. Independent studies are very few and far 
between. For a long time the only independent 
and the only robust comparison available, pub-
lished by Tufail and colleagues in 2016, compares 
algorithms tested in 2013. Since that time deep 
learning and related concepts progressed almost 
beyond recognition, and many of the algorithms 
described here are being constantly updated. This 
situation changed only recently with the publish-
ing of a study comparing multiple AI DR detec-
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tion algorithms in an anonymised fashion, which 
made it clear the algorithms’ accuracy can vary 
significantly, but unfortunately not giving readers 
any insight into the performance of any given 
algorithm [43]. We recently published a much 
smaller study comparing two algorithms on a 
local dataset [44]. Nevertheless independent stud-
ies, particularly comparisons or studies establish-
ing objective criteria through which the respective 
algorithms could be compared are missing, with 
organisations, end-users or consumers left with a 
considerable dilemma when trying to choose and 
algorithm for screening their local population.
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