Summer Work -

Honors Algebra to Honors Geometry
Summer 2023

Questions?
Email: mstirling@hollandhall.org

Combining Like Terms

Example:Simplify

$$
\begin{aligned}
& 8 x^{2}+16 x y-3 x^{2}+3 x y-3 x \\
& 8 x^{2}-3 x^{2}+16 x y+3 x y-3 x \\
& 5 x^{2}-3 x+19 x y
\end{aligned} \quad \text { Identify \&/or Group Like Terms }
$$

Simplify

$6 x+11 y-4 x+y$	$-3 p-4 t-5 t-2 p$	$3 x^{2} y-5 x y^{y}+6 x^{2} y$
$-5 m+3 q+4 m-q$	$9 x-22 y+18 x-3 y$	$5 x^{2}+2 x y-7 x^{2}+x y$

Solving Equations with variables on both sides

Example: Solve	$6 \mathrm{a}-12=5 a$		
	$\mathrm{a}-12=9$	subtract 5a	
Solve each equation	$\mathrm{a}=21$	add 12 to bo	
$3 x+5=2 x+11$		$8 m+1=7 m-9$	$11 q-6=3 q+8 q$
$-14+3 \mathrm{a}=10-\mathrm{a}$		$-2 t+10=-t$	$-7 x+7=2 x-11$

Literal Equations

Solving Inequalities \& Graphing

Solve \& Graph.

$-x+2>7$	$-5+m \leq 4$	$z+6>-2$
$-16-8 x \geq 0$	$x-5<4$	$-3 x+4 \leq-5$
$8 x-6 \geq 10$	$9(2 x-5)-3<7 x-4$	$9 x-11>6 x-9$

Calculating Slope

Example: \quad Find the slope of a line passing through $(3,-9)$ and $(2,-1)$.

Find slope.	$\begin{aligned} & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & m=\frac{-1-(-9)}{2-3}=\frac{-1+9}{-1} \\ & m=\frac{8}{-1}=-8 \end{aligned}$	Formula for slope Substitute values and simplify Slope is -8
$(4,1)(3,6)$	$(5,6)(9,8)$	$(-1,7)(-3,18)$
$(-8,0)(5,-2)$	$(0,-4)(7,3)$	$(-6,-4)(1,10)$

Finding the equation of a line (given a point and y-intercept)
Example Find an equation of the line that passes through the point $(3,4)$ and has a y-intercept of 5

	$y=m x+b$	Slope-intercept form
	$4=3 m+5$	Substitute 5 for b, 3 for x, and 4 for y.
	$-1=3 \mathrm{~m}$	Subtract 5 from both sides
	$-1 / 3=m$	Divide each side by 5
Find the equation of the line.	$y=-1 / 3 x+5$	With slope $-1 / 3$ \& y-intercept of 5 , this is the line's equation
$(2,1) ; \mathrm{b}=5$	$(7,0) ; b=13$	$(-5,3) ; b=-12$
$(-3,-3) ; b=-2$	$(-3,10) ;$ b $=8$	$(-1,4) ; b=-8$

Finding the equation of a line (given a point and the slope)
Example Find an equation of the line that passes through the point $(1,2)$ and has a slope of -3

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & \text { Point-Slope Form } \\
y-2=-3(x-1) & \text { Substitute } 2 \text { for } y_{1} 1 \text { for } x_{1} \text { and }-3 \text { for } m . \\
y-2=-3 x+3 & \text { Distribute the }-2 \\
y=-3 x+5 & \text { Add } 2 \text { to both sides }
\end{array}
$$

Find the equation of the line in slope-intercept form.

$(2,3) ; \mathrm{m}=-4$	$(-1,5) ; \mathrm{m}=2$	$(4,6) ; \mathrm{m}=-1 / 2$
$(-3,-4) ; \mathrm{m}=2 / 3$	$(0,4) ; \mathrm{m}=-3 / 2$	$(5,0) ; \mathrm{m}=-4$

Finding the equation of a line (given two points)
Example \quad Write an equation of the line that passes through the points $(4,8)$ and $(3,1)$.

$$
\begin{array}{ll}
m=\frac{1-8}{3-4} & \text { Substitute values into the formula for slope } \\
m=\frac{-7}{-1}=7 & \text { Simplify } \\
y-1=7(x-3) & \text { Select either point and substitute values of point and slope into point-slope form } \\
y-1=7 x-21 & \text { Distribute the } 7 \\
y=7 x-20 & \text { Add } 1 \text { to each side to get the equation of a line in slope-intercept form }
\end{array}
$$

Find the equation of the line in slope-intercept form.

$(6,-3)(1,2)$	$(5,-1)(4,-5)$	$(-3,-7)(0,8)$
$(-7,9)(-5,3)$	$(-2,4)(3,-6)$	$(1,2)(-1,-4)$

Standard Form of a Line ($\mathrm{Ax}+\mathrm{By}=\mathrm{C}$)

Example	Graph a line in standard form $2 x+3 y=6$		
Option 1:	Change to slope-intercept form	Option 2	Keep in Standard form
$2 x+3 y=6$		$2 x+3 y=6$	
$3 y=-2 x+6$	Subtract $2 x$ from each side	$m=\frac{-A}{B}=\frac{-2}{3}$	Slope in standard form $\frac{-A}{B}$
$y=-2 / 3 x+2$	Divide everything by 3		
$m=-2 / 3$ and $b=2$	Graph ay-intercept at $2 \& a$	$b=\frac{C}{B}=\frac{6}{3}=2$	y-intercept in stand form $b=\frac{C}{B}$
slope of- $-2 / 3$			

Graph the y-intercept of 2, then go down 2 and right 3 to find another point on the line.
You can also go up 2 and left 3; connect the points to make a line.

Graph the equation of each ${ }^{\prime}$ line.

$4 x+5 y=10$		$x-4 y=8$	
$2 x-3 y=5$		$3 x-4 y=-12$	

Solving Systems of Equations (by graphing or substitution)

Example Solve the system $y=2 x+5$ and $y=-1 / 2 x-4$			
By Graphing		By substitution	
Graph $\mathrm{y}=2 \mathrm{x}+3$	rif	Given $\mathrm{y}=2 \mathrm{x}+3$ \& $\mathrm{y}=-1 / 2 \mathrm{x}-7$	
y-intercept of 3		$2 x+3=-1 / 2 x-7$	Substitute in place of y
slope of 2		$21 / 2 x+3=-7$	Add $1 / 2 \times$ to each side
		$21 / 2 x=-10$	Subtract 3 from each side
Graph $\mathrm{y}=-1 / 2 \mathrm{x}-7$	-	$x=-4$	Divide each side by $21 / 2$
y-intercept of -7			
slope of $-1 / 2$	$1 /$	$y=2(-4)+3$	Substitute (-4) in place of x
		$y=-8+3$	Simplify
$(-4,-5)$ Coordinates for solution		$y=-5$	Combine like terms to find y
		(-4, -5)	Coordinates for solution

Solve each system by graphing or substitution

$\begin{aligned} & y=2 x+4 \\ & -3 x+y=-9 \end{aligned}$		$\begin{aligned} & y=x-1 \\ & x+y=3 \end{aligned}$
$\begin{aligned} & 4 x+y=0 \\ & x+2 y=-7 \end{aligned}$		$\begin{aligned} & 1 / 2 x+2 y=12 \\ & x-2 y=6 \end{aligned}$

Solve Systems of Equations (by elimination)

Example

$2(0)+2 y=-4$	Substitute 0 for x in
$2 y=-4$	either equation; simplify
$y=-2$	Divide each side by 2

$$
(0,-2) \quad \text { Solution to system }
$$

Solve each system by elimination.

Solving Proportions

Example

$$
\begin{aligned}
\frac{x}{8} & =\frac{3}{4} \\
4 x & =8 \cdot 3 \\
4 x & =24 \\
x & =6
\end{aligned} \quad \text { Cross multiply }
$$

$$
\frac{6}{x+4}=\frac{2}{9}
$$

$$
6 \cdot 9=2(x+4) \quad \text { Cross Multiply }
$$

$$
54=2 x+8 \quad \text { Simplify both sides }
$$

$$
46=2 x \quad \text { Subtract } 8 \text { from both sides }
$$

$$
x=23 \quad \text { Divide each side by } 2
$$

Solve each proportion to find the value of the given variable.

$\frac{y}{40}=\frac{3}{8}$	$\frac{3}{p-6}=\frac{1}{p}$	$\frac{3}{8}=\frac{3}{2 d}$
$\frac{r}{3 r+1}=\frac{2}{3}$	$\frac{3}{m+4}=\frac{9}{14}$	$\frac{w}{4}=\frac{9}{w}$

Property of Exponents

Property		Example
Product of Powers	$a^{m} \cdot a^{n}=a^{m+n}$	$x^{4} \cdot x^{2}=x^{6}$
Power of a Power	$\left(a^{m}\right)^{n}=a^{m \cdot n}$	$\left(x^{4}\right)^{2}=x^{8}$
Power of a Product	$(a b)^{m}=a^{m} b^{m}$	$(2 x)^{3}=8 x^{3}$
Negative Power	$a^{-n}=\frac{1}{a^{n}}$	$x^{-3}=\frac{1}{x^{3}}$
Zero Power	$a^{0}=1$	$4^{0}=1$
Quotient of Powers	$\frac{a^{m}}{a^{n}}=a^{m-n}$	$\frac{x^{10}}{x^{4}}=x^{6}$
Power of Quotients	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$	$\left(\frac{x}{y}\right)^{3}=\frac{a^{3}}{b^{3}}$

Simplify each exponent. Answers should be written using positive exponents.

$g^{5} \cdot g^{11}$	$\left(b^{6}\right)^{3}$	w^{-7}
$\frac{y^{12}}{y^{8}}$	$\left(3 x^{7}\right)\left(-5 x^{3}\right)$	$\left(-4 a^{5} b^{0} c\right)^{2}$
$-6\left(x^{2} y^{3}\right)^{4}$	$\left(-18 m n^{4}\right)\left(-1 / 6 \mathrm{mn}^{2}\right)$	$\frac{16 x^{5} y^{2}}{2 x^{3} y^{3}}$

Polynomial Operations

Add or Subtract like terms	Distributing	Multiplying binomials \&/or trinomials	
$\left(7 x^{2}+4 x-3\right)-\left(-5 x^{2}-3 x+2\right)$	$-2 x(5 x+11)$	$(7 x-3)(3 x+7)$	Multiply everything in the $1^{\text {st }}$ binomial times the 2

Simplify each polynomial

$(2 x+3 y)+(4 x+9 y)$	$\left(7 x^{2}+x+1\right)-\left(3 x^{2}-4 x-3\right)$	$\left(7 a^{2}-a+4\right)-\left(3 a^{2}-4 a-3\right)$
$-3 x\left(8 x^{2}-3 x+1\right)$	$-10 p q\left(3 p q+4 p-5 q^{2}\right)$	$5 w\left(w^{2}-7 w+3\right)-2 w\left(2 w^{2}-5 w+2\right)$
$(x+4)(x-7)$	$(5 x-2 y)(3 x+9 y)$	$(z+5)(4 z-6)$

Factoring Polynomials ($a x^{2}+b x+c$)
Examples:

Factoring out GCF	Difference of squares	Perfect Square Trinomials	Trinomials
$6 x^{2}+21 x$	$x^{2}-64$	$4 x^{2}+12 x+9$	$3 x^{2}+7 x+2$
$3 x(2 x+7)$	$(x+8)(x-8)$	$(2 x+3)^{2}$	$(3 x+1)(x+2)$

Factor completely.

$6 e^{3} f-11 e f$	$y^{2}-5 y-84$	$6 x^{2}+7 x+2$
$6 z^{2}-5 z-4$	$75 x^{2}-147 y^{2}$	$x^{2}-25$
$x^{2}-6 x+9$	$16 c^{2}+72 c d+81 d^{2}$	$x^{4}-16$

Solving Quadratics

Example $\quad x^{2}+3 x^{2}=10$

$$
\begin{array}{cl}
x^{2}+3 x^{2}-10=0 & \text { Subtract } 10 \text { from both sides so the quadratic is equal to } 0 \\
(x-5)(x+2)=0 & \text { Factor (see previous section on different kinds of factoring) } \\
x=5 \text { and } x+2=0 & \text { Use Zero Product Property and put each binomial equal to } 0 \\
x=-2 & \text { Solve both for } x .
\end{array}
$$

Solve each quadratic to find the possible values of x .

$3 x^{2}-12=0$	$6 x^{2}-5 x+1=0$	$x^{2}+7 x=18$
$x^{2}+11 x=80$	$2 x^{2}=x+15$	$3 x^{3}+3 x^{2}-60 x=0$

Simplifying Radicals

An expression is in simplest radical form when:

1.) there is no integer under the radical sign with a perfect square
2.) there are no fractions under the radical sign
3.) there are no radical in the denominator

Examples:
$\sqrt{20}$
$\sqrt{4} \cdot \sqrt{5}$
$2 \sqrt{5}$
$\begin{array}{ll}\sqrt{\frac{13}{49}} & \sqrt{\frac{9}{24}} \\ \frac{\sqrt{13}}{\sqrt{49}} & \frac{\sqrt{9}}{\sqrt{24}}\end{array}$
$\frac{3}{\sqrt{4} \cdot \sqrt{6}}=\frac{3}{2 \cdot \sqrt{6}}$
$\frac{3}{2 \cdot \sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}$
$\frac{3 \sqrt{6}}{2 \sqrt{36}}=\frac{3 \sqrt{6}}{2 \cdot 6}$
$\frac{3 \sqrt{6}}{12}=\frac{\sqrt{6}}{4}$

Express the following in simplest radical form.

$\sqrt{121}$	$\sqrt{40}$	$\sqrt{72}$
$\sqrt{\frac{25}{36}}$	$\sqrt{\frac{27}{45}}$	$\sqrt{\frac{50}{75}}$
$\frac{\sqrt{32}}{\sqrt{5}}$		$\sqrt{5} \cdot \sqrt{60}$

Pythagorean Theorem

Example: If c is the measure of the hypotenuse of a right triangle, find each missing measure.

$$
a=6, c=10, b=
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 6^{2}+b^{2}=10^{2} \\
& 36+b^{2}=100 \\
& b^{2}=64 \\
& b=8
\end{aligned}
$$

If c is the measure of the hypotenuse of a right triangle, find each missing measure.

