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1 Introduction 
 

These days everything from fridges to running shoes are being fitted with sensors and have 
internet connectivity. Torrents of information from all these 'sensorised' devices flow in a 
massive and growing internet of things (IoT). Having access to data from these devices is all well 
and good (it's cool to see how fast and how far you run every day for example) but if we add 
machine learning (ML) and artificial intelligence (AI) to the mix we can get real insights into the 
data and transform how we do things. 
 
In industrial settings, the potential for ML and AI is massive. Indeed, the term industrial internet 
of things (IIoT) has been coined to cover this emerging field. 
 

1.1 Manufacturing the Future 

Giving machines 'intelligence' by leveraging sensor data and using machine learning, promises 
to improve processes and operations as well as providing brand new revenue streams. The best 
thing is that all the promise and potential applies whether you are a multinational giant or a 
one-person outfit operating out of a small industrial unit. 
 
The hard part is to realise this potential. This is where having the right tools is critical. 
 
 

1.1.1 Out on the Edge 
 

To bring machine learning (ML) to industrial settings we could simply run our inference as 
normal, on conventional computing systems that sit in perfectly controlled server rooms or 
similar. However, what is more likely is that machine learning models will have to perform their 
inference in close proximity to their target machines; in other words, they will need to operate 
at the 'edge'. 
 
Edge processing is a hot topic in IIoT right now. Running ML models combined with space and 
power restrictions as well as harsh environments will mean those edge devices will need to 
have good processing power in a compact and hardy form factor. The software used will 
therefore have to cope with these restrictions. 
 
In this article, we are going to take a look at two popular ML frameworks. The aim is to see how 
their behaviour and performance can influence their use in industrial settings at the edge. 
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1.2 The Frameworks 

Currently, there are a myriad of frameworks allowing us to develop ML models that make 
industrial applications smarter and far more intelligent. Though these frameworks are designed 
to be general ML platforms, the inherent differences of their designs, architectures, and 
implementations lead to a potential variance of ML performance on Graphic Processing Units 
(GPUs). 

1.2.1 TensorFlow 

TensorFlow is an end-to-end open-source deep learning framework. It has a comprehensive, 
flexible ecosystem of tools, libraries and community resources. There are three main features 
of this framework: easy model building, robust ML production anywhere and powerful 
experimentation for research. Moreover, it has been adopted by several tech giants such as 
Google, Intel, Twitter, and Coca Cola. Community engagement is quite high as almost everyone 
in the machine learning (ML) community is aware of it. To date, there are 61,000 repositories, 
870,000 commits and 5,000 wiki pages related to TensorFlow while there are only 2,000 
repositories, 41,000 commits, and 436 wiki pages for MXNet (discussed below). However, 
TensorFlow can hog a lot of GPU as it tries to allocate all available GPU memory for itself.  

1.2.2 MXNet 

MXNet is known to be a flexible and efficient library for deep learning. It is developed with 
many different programming languages thus it can support a wide variety of languages such as 
C++, Python, Matlab, and R. MXNet is lightweight because its source code is almost 40 times 
lighter than the source code in TensorFlow. Moreover, it is also optimised for GPU memory 
usage because it can perform dynamic allocation of memory based on actual requirements. 
Based on these advantages, we decided to take a deeper look at its difference in performance 
with TensorFlow.  

 

 

 

 

 

 



 

In confidence. © Smartia Ltd 2019 

4 

 

2 Datasets 
 

Fashion-MNIST is a good starting dataset for us to do benchmarks on, specifically on the 
performance of ML frameworks using a Central Processing Unit (CPU) or a GPU. A general 
overview of this dataset can be found in Figure 1. It consists of a training dataset of 60,000 
examples and 10,000 examples in its test set. Each example is a 28*28 grayscale image, 
associated with a label from 10 classes. This dataset will be used to get performance results 
with a CPU or GPU. Both MXNet and TensorFlow have included Fashion-MNIST as a built-in 
dataset.  

 

Figure 1: Image examples from Fashion-MNIST dataset, image is taken from fashion-mnist. 
 
After using the Fashion-MNIST dataset, we will use three datasets benchmarked by keras-
apache-mxnet[2] to run experiments on a GPU. keras-apache-mxnet  can help us use Keras, 
which is high-level API running on top of other frameworks, with MXNet support as well as 
TensorFlow. Thus, we can easily use MXNet or TensorFlow as the backend framework using 
similar benchmark scripts with this type of Keras. 
 
CIFAR-10 dataset includes 50,000 training images and 10,000 test images in 10 classes. Each 
example is a 32*32 colour image. Also, some example images are shown in Figure 2. It 
is commonly used to train machine learning and computer vision algorithms. Keras also 
includes CIFAR-10 as its built-in dataset. 
 
 
 

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/awslabs/keras-apache-mxnet/tree/master/benchmark
https://github.com/awslabs/keras-apache-mxnet/tree/master/benchmark
https://github.com/awslabs/keras-apache-mxnet/tree/master/benchmark
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Figure 2: CIFAR-10 image examples, image is taken from CIFAR-10 dataset. 
 
ImageNet is an image dataset that includes more than 14 million images with annotations. In 
this experiment, we downloaded the ILSVRC2012 version which has about 1.3 million images. In 
Figure 3, you can get a sense of example images in one synset in ImageNet. This dataset can be 
downloaded using a downloader script provided by TensorFlow. You can use the following two 
steps to download ILSVRC2012 ImageNet dataset.  
 

1. Create an account with image-net.org and generate a username and access_key 
2. Use download_imagenet.sh from TensorFlow to download the raw images for train and 

validation. 
 
 
 
 
 
 
 
 
 
 
 

https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/
https://github.com/tensorflow/models/blob/master/research/inception/inception/data/download_imagenet.sh
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Figure 3: A screenshot of ImageNet original images from one synset: "tench, Tinca tinca".  
 
Besides these real datasets, synthetic data is also used. This data is defined in keras-apache-
mxnet and it has 1,000 (256*256) samples in 1,000 classes. Each value is formed by random 
numbers ranging from 0 to 255.  
 
Table 1 summarises the information in the three datasets as well as a list of some hyper-
parameters for training. These hyper-parameters are defined by benchmark scripts in keras-
apache-mxnet. In terms of batch size, the default value for all datasets is 32. However, we also 
use 16 as it is valuable while we train synthetic and CIFAR-10.  For ImageNet, we only use 8 as a 
batch size because it is quite a large dataset.   

https://github.com/awslabs/keras-apache-mxnet/blob/master/benchmark/scripts/models/resnet50_benchmark.py
https://github.com/awslabs/keras-apache-mxnet/blob/master/benchmark/scripts/models/resnet50_benchmark.py
https://github.com/awslabs/keras-apache-mxnet/tree/master/benchmark
https://github.com/awslabs/keras-apache-mxnet/tree/master/benchmark
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 Samples Channels Resolution Classes 
Batch 
Size 

Optimiser 
Learning 

Rate 

mnist_fashion 60000 3 28*28 10 32 Adam 0.001 

Synthetic Data 

(Random Data) 
1000 3 256*256 1000 16, 32 RMSprop 0.0001 

CIFAR-10 60000 3 32*32 10 16, 32 Adam 0.001 

ImageNet 
(ILSVRC2012) 

1, 281, 
167 

3 

High Resolution 
varied from 
images to 

images 

1000 8 Adam 0.001 

 
Table 1: Datasets information: mnist_fashion, synthetic data, CIFAR-10, and ImageNet dataset. 
We also list the default hyperparameters such as batch_size, optimiser and learning rate while 

using these datasets for training. 
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3 Methodology  

 

 
To test performances of MXNet and TensorFlow to train the models, four mentioned datasets 
will be used to benchmark these two ML frameworks. To compare training speeds with a CPU, 
fully connected neural networks (NNs), as well as convolutional neural networks (CNNs), are 
implemented.  
 
We use different architectures to build the model for different datasets, below is the code for a 
fully connected neural network (NN) architecture: 
 
 model=keras.Sequential([ 
     keras.layers.Flatten(input_shape=(28,28)), 
     keras.layers.Dense(128,activation=tf.nn.relu), 
     keras.layers.Dense(10,activation=tf.nn.softmax) 
 ]) 
The first “Flatten” layer transforms the format of the images from a 2d-array (of 28 by 28 pixels) 
to a 1d-array of 28*28 = 784 pixels. This layer does not learn as it only reformats the data. After 
this operation, two layers are added. The first layer has 128 nodes and the second is a 10-node 
softmax layer which returns an array of 10 probability scores that sum to 1.  
 
The architecture of a CNN will include 2 Conv2D layers. The first layer will have 64 nodes and 
the second has 32 nodes. With kernel_size equals to 3, we will have a 3*3 filter matrix. 
Between Conv2D layers and the dense layer, there is also a 'Flatten' layer. In the final output 
layer, it is a 10-node softmax layer. 
 
 model = Sequential() 
 model.add(Conv2D(64, kernel_size=3, activation='relu', input_shape=(28,28,1))) 
 model.add(Conv2D(32, kernel_size=3, activation='relu')) 
 model.add(Flatten()) 
 model.add(Dense(10, activation='softmax')) 
 
As keras-apache-mxnet has provided benchmark results for three datasets, it is convenient to 
do experiments based on their scripts. In addition, we customised the batch size parameter to 
further test performances between the two ML frameworks. ResNet56 networks are used to 
build the training models as it is a built-in training network which can be easily accessed from 
Keras. 

https://github.com/awslabs/keras-apache-mxnet/tree/master/benchmark
https://arxiv.org/abs/1512.03385
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4 Experiments 

 
 
In this section, our goal is to monitor the performance of the training process using MXNet and 
TensorFlow while running training models with the CPU and GPU. Setting up the environment 
for the CPU version is quite straightforward. We just need to install the CPU versions of MXNet 
and TensorFlow. Examples of NN can be found in TensorFlow NN tutorial, and CNN models can 
be built following the Keras CNN tutorial[1]. However, we replace the MNIST dataset with 
Fashion-MNIST in the Keras CNN model.  
 
To run models with the GPU, we need to install more packages such as CUDA and cuDNN along 
with the GPU versions of MXNet and TensorFlow. CUDA can boost up NVIDIA GPUs to solve 
complex computational problems in a more efficient way by leveraging the parallel compute 
engine. cuDNN is a GPU-accelerated library, specifically for deep neural networks. The following 
two sections will introduce the installation procedure.  
 
The first part (4.1) will be a guideline about how to set up our test environment using the 
required packages. The second part (4.2) includes specific commands for running the 
benchmark scripts. After setting up the environment, the average training speed for each epoch 
is monitored. Our metric of measuring performances is "img/sec"(number of images processed 
per second). 
 

4.1 Setting up the test environment 

This whole article is aimed at general readers rather than the hardcore researchers. With that 
in mind, we use a DELL G3 15 gaming laptop, which has a GTX 1060 graphics card, to perform 
the experiments. The specifications of this computer are shown in Table 2. 
 

Name Detail 

CPU Intel Core i7-8750H 2.20GHz 

MEMORY 16.0 GB 

Disk WDC 1TB / SSD 256 GB 

GPU NVIDIA GeForce GTX 1060 

OS Microsoft Windows 10 Home 

Shell Windows PowerShell 

 
Table 2: Computer configuration 

https://www.tensorflow.org/tutorials/keras/basic_classification
https://towardsdatascience.com/building-a-convolutional-neural-network-cnn-in-keras-329fbbadc5f5
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Here are the six steps to set up the test environment based on the above specifications. 
 

1. Install python and pip in Windows. Easy Guide Link. 
2. Open Windows PowerShell and install pipenv 

 

 pip install pipenv 
 

3. Create a new folder for the experiments in PowerShell 
 

 mkdir performance_test; cd performance_test 
 

4. Create a new virtual environment under the new folder using "pipenv shell" command 
 

 pipenv shell 
 

5. Install the required packages described in the Library versions (see table below). 
6. Install CUDA 10.0 and configure cuDNN on Windows. 

 
We use keras-apache-mxnet[2] to install Keras, it is necessary to install it along with MXNet. If 
we need to test the running models on the CPU, then CPU versions of MXNet and TensorFlow 
should be installed. Once the GPU versions of these two frameworks are installed, they will 
supersede the CPU versions when the tests are run. The required packages for the experiments 
are listed in Table 3. 
 

Framework Version Installation 

Keras 2.2.4.1 
pip install keras-mxnet 

Note: This package requires installing MXNet first. 

MXNet (CPU) 1.4.0 pip install mxnet 

MXNet (GPU) 1.4.0 pip install mxnet-cu100 

Tensorflow (CPU) 1.13.1 pip install tensorflow 

Tensorflow (GPU) 1.13.1 pip install tensorflow-gpu 

CUDA 10.0 Download Link  

cuDNN 7.5 Download Link  

 
Table 3: Library versions: A list of packages which we use for benchmarking. 

 

https://arunrocks.com/guide-to-install-python-or-pip-on-windows/
https://developer.nvidia.com/cuda-10.0-download-archive
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html
https://github.com/awslabs/keras-apache-mxnet/tree/master/benchmark
https://developer.nvidia.com/cuda-10.0-download-archive
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html
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4.2 Ways to run benchmark scripts 
In this part, we will introduce the steps of running benchmark scripts for three datasets. 
 
Ways to download benchmark scripts:  
 

1. Git clone the Keras-Apache-MXNet repo: 
 

 git clone https://github.com/awslabs/keras-apache-mxnet.git 
 
2. Go to the keras-apache-mxnet-master\benchmark\scripts folder 
 

 cd keras-apache-mxnet-master\benchmark\scripts 
 
Before we start running the scripts, we need to enable the parameter, batch_size. Batch_size is 
a number which defines how much data is required for each iteration. Using a larger batch size 
will require more memory while smaller batch sizes require less. This feature is important 
because the memory is limited thus using a suitable batch size can utilise the memory usage. In 
this case, we need to enable "batch_size" as an argument in the script. For example, 
benchmark_resnet needs to be modified with an extra argument "batch_size".  
 
Here is the example code for adding "batch_size" as a new argument in benchmark_resnet.py. 
 

parser.add_argument('--batch_size', default=32, type=int, help='Number of batch_size') 
 
# Replace line 78 with the following example code in benchmark_resnet.py 
batch_size = args.batch_size * num_gpus if num_gpus > 0 else args.batch_size  

 
Run benchmark script for CIFAR-10 (Example code).  
 

python benchmark_resnet.py --dataset cifar10 --version 1 --layers 56 --gpus 1 --epoch 20 
--batch_size 32 

 
Run benchmark script for Synthetic data (Example code). Note: Current Path is the directory of 
the scripts in the benchmark, e.g. ''C:\Users\junzh\python_tests\mxnet_test\keras-apache-
mxnet-master\benchmark\scripts":  
 

python run_benchmark.py --pwd=['Current Path'] --mode=gpu_config --
model_name=resnet50 --dry_run=True --inference=False --epochs=20 

 
Run imageNet script. Note: data_path is the training data folder of imagenet, e.g. 
"D:\imageNetData\tensorflow_imagenet\imagenet_data\train"  
 

 



 

In confidence. © Smartia Ltd 2019 

12 

 

 
python benchmark_resnet.py --dataset imagenet --version 1 --layers 56 --gpus 1 --epoch 
20 --train_mode fit_generator --data_path ['ImageNet train data path'] --batch_size 8 

 
To switch the backend from MXNet to TensorFlow or conversely, you can update the 
$HOME/.keras/keras.json to set the backend and image_data_format:  
 
For TensorFlow backend benchmarks, set backend: TensorFlow and image_data_format: 
channels_last.  
 
For MXNet backend benchmarks, set backend: mxnet and image_data_format: channels_first. 
 
It is strongly suggested that we set channel_first for MXNet because using channel_last with 
MXNet will greatly slow the training speed down in GPU mode. This framework prefers 
channel_first due to performance reasons on the GPU. More information can be found in this 
documentation.  

 

 

 

 

 

 

 

 

 

https://mxnet.incubator.apache.org/versions/master/tutorials/basic/reshape_transpose.html#channel-first-for-images
https://mxnet.incubator.apache.org/versions/master/tutorials/basic/reshape_transpose.html#channel-first-for-images
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5 Results 
 
In this section, we present the results of our experiments. 
 
In Table 4, MXNet is shown to be about 30% slower than TensorFlow if we build the training 
model using one neural network layer with 128 nodes. The training speed dramatically 
decreases if we use a CNN to build the model and run it again. However, there is no difference 
between TensorFlow and MXNet if we use a GPU to train the model using CNN. In this instance 
both need around 10 seconds to train one epoch of the mnist_fashion dataset. One possible 
reason for this is that mnist_fashion is a small dataset and the model is rather simple as it only 
has 2 hidden layers.  
 

Computer 
Model 

GPUs* 
Computing 

Model 
Batch 
Size 

Keras-
MXNet 

(img/sec)  

Keras-
Tensorflow 
(img/sec) 

Speed Ratio 
(Speed of MXNet 

/ Speed of 
Tensorflow) 

DELL G3 15 0 
One neural 

network layer 
with 128 nodes 

32 3571 5000 71% 

DELL G3 15 0 
Two Conv2D 

layers (64 nodes 
and 32 nodes) 

32 300 344 87% 

DELL G3 15 1 
Two Conv2D 

layers (64 nodes 
and 32 nodes) 

32 4545 4545 100% 

 
Table 4: Results of performance when running fully connected neural networks and CNN on a 
CPU or a GPU using the mnist_fashion dataset. * If GPU is 0, it means it uses a CPU (Intel Core 

i7-8750) to generate the benchmarks.
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 Computer 

Model 
GPUs 

Batch 

Size 

Speed Ratio 

(Speed of 

MXNet / Speed 

of Tensorflow) 

Keras-

MXNet 

Speed 

(img/sec) 

GPU utilisation 

ratio while 

running MXNet 

Keras-

Tensorflow 

Speed 

(img/sec) 

GPU utilisation 

ratio while running 

Tensorflow 

Synthetic 

Data 

DELL G3 

15 
1 16 100% 14 2% 14 62% 

Synthetic 

Data 

DELL G3 

15 
1 32 82% 41 2% 50 40% 

CIFAR-

10 

DELL G3 

15 
1 16 89% 229 1% 257 38% 

CIFAR-

10 

DELL G3 

15 
1 32 78% 357 2% 454 44% 

ImageNet 
DELL G3 

15 
1 8 10% 3.2 1% 32 20%**  

ImageNet 
DELL G3 

15 
1 16 -- 

Out of 

Memory 
-- 

Out of 

Memory 
--  

 
Table 5: Training speed results and GPU utilisation ratio for three datasets based on different batch sizes using ResNet-50 network. 

* For the training of ImageNet, fit_generator is used to run the model. To use this, we set steps_per_epoch to 10000. It is 
estimated that 110 hours are needed for one epoch if we use MXNet while about 10 hours can be used to finish one epoch using 
TensorFlow.  

** This value fluctuates from 0 - 30% during training. 

https://arxiv.org/abs/1512.03385
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In Table 5, we can see that the smaller batch sizes result in lower speed. For synthetic data, the 
speed decreases from 41 img/sec to 14 img/sec if the batch size changes from 32 to 16. In 
terms of ImageNet, the model can't be run if the batch size is 16 or above.  
 
MXNet is generally slower than TensorFlow by around 20% when training synthetic data and 
CIFAR-10 using a 32 batch size. Moreover, if the dataset is too large like ImageNet, the training 
speed using MXNet is ten times slower than TensorFlow. 
 
There is a huge difference in the GPU utilisation ratio between the two frameworks. 2% is the 
common case for MXNet while the ratio will go from 40% to 60% if we use synthetic data or 
CIFAR-10. Training ImageNet, the ratio for MXNet is about 1% while this ratio fluctuates from 0 
to 30%.  
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For clarity, Figure 4 is a graph containing information from the above table: 

 

Figure 4: Differences between MXNet and TensorFlow in training speed and GPU utilisation 
ratio using three datasets. Training speed from MXNet is generally slower than TensorFlow in 

all datasets. However, MXNet is much more efficient than TensorFlow as it only occupies 2% of 
the GPU while TensorFlow’s processes use more than 20% of the GPU. 
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6 Conclusion 
 

6.1 Training Speed 

As we have noticed the training speed is slower with MXNet than TensorFlow using current 
configuration settings. This result is also confirmed in another blog [5]. MXNet is believed to be 
more efficient and faster according to official benchmark results and a blog posted in 
Medium.com. However, in the scripts in which MXNet has a higher training speed, they used 
multiple GPUs to boost the training process. This difference raises a question: Is MXNet more 
efficient when there are multiple devices such as GPUs? Further experiments need to be 
designed to test MXNet on a multiple CPU or GPU scenario. 

6.2 GPU utilisation ratio 

On the other hand, one of the striking differences was the GPU utilisation ratio. Whereas 
MXNet only occupied 2% on the GPU, TensorFlow occupied close to 40% - 60%. Does this 
behaviour mean that we could have more tasks on the GPU while training the model using 
MXNet? This blog [3] takes a look at the differences in memory usage between the two ML 
frameworks, it found that TensorFlow allocates as much memory as possible, even though its 
memory footprint is similar to MXNet without lowering the training speed. In contrast, the 
experiment proves that MXNet aggressively reduces memory footprint and reuses memory 
space whenever possible. 

6.3 GPU memory usage 

We also have a look at memory usage based on the information in this blog [4]. We can set the 
fraction of GPU memory to be allocated for TensorFlow by using the following example 
commands: 
 

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = 
tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 

 
Although we decrease the fraction of gpu_memory_fraction from 0.99 to 0.05, the training 
speeds remain the same for both when we train using CIFAR-10 with a batch size of 32.  

 

 

 

https://syncedreview.com/2019/04/23/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx/
https://syncedreview.com/2019/04/23/tensorflow-pytorch-or-mxnet-a-comprehensive-evaluation-on-nlp-cv-tasks-with-titan-rtx/
https://medium.com/@julsimon/keras-shoot-out-part-2-a-deeper-look-at-memory-usage-8a2dd997de81
https://medium.com/@julsimon/keras-shoot-out-part-2-a-deeper-look-at-memory-usage-8a2dd997de81
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