Conservation & Emerging Fisheries in The Bahamas – Conservation & Management Challenges, Achievements & Future Directions

Krista Sherman1, Aaron Shultz2, Craig Dahlgren3, Claire Thomas3, Edward Brooks4, Annabelle Brooks5, Daniel Brumbaugh5, Lester Gittens6 and Karen Murchie7

Perry Institute for Marine Science1,2,3,4,5,6,7, Fisheries Conservation Foundation1,4,7, College of DaPalm2, Cayo Eleuthera Institute3, University of California Santa Cruz, Department of Marine Resources7, John G. Shedd Aquarium1

Introduction

Marine resources are culturally and economically vital to The Bahamas and other small island developing states (SIDS). Contemporary Bahamian fisheries comprise commercial, sport, recreational and subsistence fishing, with most of the reported revenue (2% of GDP) generated from commercial fishing (Sherman et al. 2018). Commercial fishing typically occurs on Great Bahama, Little Bahama and Cay Sal banks and is legally restricted to vessels owned by Bahamians (Fig. 1). Species including Caribbean spiny lobster (Panulirus argus), queen conch (Lobatus gigas), Nassau grouper (Epinephelus striatus) along with other fish and invertebrate species are sold both locally and to international markets. Illegal, unreported and unregulated fishing coupled with inadequate regulations and enforcement are the main factors contributing to the decline of Bahamian fisheries along with other anthropogenic impacts. Case studies of economically and ecologically valuable fish species, are used to highlight conservation successes, knowledge gaps and deficiencies in existing management approaches.

Contemporary Fisheries

Commercial and subsistence fisheries mainly target Caribbean spiny lobster, queen conch, and medium- to large-bodied reef fish, including Nassau grouper; other groupers (Epinephelidae), snappers (Lutjanidae), grunts (Haemulidae) and jacks (Carangidae) as well as stone crab (Menippe mercenaria). Of these commercial and subsistence species, snappers, grunts, jacks and black grouper are currently unmanaged through specific fisheries regulations such as size limits or closed seasons. Critical needs for managing and monitoring the most economically valuable species (Caribbean spiny lobster; queen conch and Nassau grouper) are outlined below:

- Address IUU fishing both domestic and foreign
- Complete comprehensive stock assessments
- Adopt recommended science-based changes to fisheries regulations to promote population recovery and sustainability
- Improve outreach for key stakeholders about fishery regulations (e.g. size limits and closed seasons) and the importance of fish spawning aggregations
- Examine ecosystem impacts of overfishing and use fishing gears on benthic community structure
- Investigate source-sink dynamics to inform the placement of marine protected areas (MPAs) that also include high-quality habitats
- Complete national economic valuation studies that incorporate income, recreational and commercial fisheries data

Emerging Fisheries

Emerging fisheries (e.g. parrotfish, sea cucumbers, and gorgonians) have become established due to declines in traditional fishery species and other social, economic, and technological factors, including biomedical research, which utilizes bioactive compounds derived from marine organisms in drug development. Emerging fisheries have the potential to expand the fishing sector; improve food security and provide income to a greater number of fishers. However, they present new challenges for management due to lack of data on landings, population dynamics and the ecological function of these species.

Parrotfish

Currently, The Bahamas has greater densities of large parrotfishes than other parts of the Caribbean (Fig. 2), but the development of this emerging fishery poses a danger to parrotfish populations and the ecological function that they serve on reefs. Research is currently underway to assess the harvest of parrotfish, including how it varies across The Bahamas, which species are being targeted and how the development of the fishery is affecting populations. Integrating social science and ecological data will be used to help inform recommendations for sustainably managing parrotfish in The Bahamas. Management decisions must examine its value as a commercial fishery weighed against its ecological value in maintaining the health of coral reefs.

Sea Cucumbers

Due to density-dependent reproduction, many sea cucumbers stocks are easily overfished and have very slow rates of recovery. In 2010, a small-scale export fishery for sea cucumbers opened in north Andros targeting two commercially valuable shallow water species, the donkey dung or “brown” sea cucumber (Holothuria mexicana) and the furry or “green” sea cucumber (Aestechopus multifidus). After only 11 months, the fishery collapsed due to local stock depletion, high haul costs and falling sea cucumber prices (Sherman et al. 2018). Since 2016, there have been reports of sea cucumbers being harvested in several parts of the Bahamas, but no landings data have been collected. Because sea cucumber fisheries around the world have proven difficult to manage sustainably, it may not be suitable for further development in The Bahamas unless better stock assessments and strict limits are placed on the fishery.

Conservation Successes

Reducing anthropogenic threats through proactive management approaches have been instrumental for conserving sharks, sea turtles and bonefish. Examples of successful conservation measures include:

- Bans or restrictions on specific gear types and fishing practices (e.g. 1993 longline ban for sharks and 1986 ban on use of nets to capture bonefish)
- Harvest bans on sea turtles and turtle products in 2009 and sharks (2011)
- Shift from extractive to catch-and-release recreational fishing for bonefish
- Establishment of regulations prohibiting commercial sale of bonefish
- Development and adoption of best handling practices by guides and anglers to increase post-release survival of bonefish. These decisions have resulted in positive ecological and economic benefits for The Bahamas.

Management Recommendations

In The Bahamas and other SIDS, exploited species provide key ecological functions that are critical to maintain healthy marine ecosystems. To better address fisheries objectives for The Bahamas and prevent further declines in species and ecosystem function, we recommend:

- Completing comprehensive stock assessments for contemporary and emerging fishery species
- Developing and implementing adaptive science based species-specific fishery regulations and management plans
- Implementing long-term integrative and inter-disciplinary monitoring programs
- Incorporating genetic and demographic connectivity (population dynamics) into strategic placement of MPAs and no-take MPAs to maintain genetic diversity and assist with population recovery
- Implementing standardized consistent, accurate and timely reporting across all fishery sectors
- Strengthening regional and international management agreements and partnerships to improve enforcement of fishery regulations, reduce IUU fishing, protect migratory species and support population dynamics
- Strategic use of targeted communication and outreach materials for various stakeholders to inform support for fisheries management and conservation
- Improving coastal and habitat protection for marine ecosystems
- Advocating for further development and diversification of sustainable livelihoods and eco-tourism-based opportunities for fisheries and family Island communities
- Adapting ecosystem-based and precautionary management approaches for data deficient species and habitats.

The future of fisheries depends on the successful use of adaptive measures to address both current and predicted anthropogenic and natural impacts to species and their habitats.

References

We thank the Department of Marine Resources for providing fishery data. Figure 1 was kindly prepared by Lindy Knowles (Bahamas National Trust).

Figure 1. Map of The Bahamas showing major fishing islands and fishing banks.

Figure 2. Comparison of densities of large parrotfish in The Bahamas versus the Caribbean using (Dahlgren et al. 2016).

Figure 3. An early adopter improvement to a fishing fishery:

- Reduce IUU fishing both domestic and foreign
- Complete comprehensive stock assessments
- Adopt recommended science-based changes to fisheries regulations to promote population recovery and sustainability
- Improve outreach for key stakeholders about fishery regulations (e.g. size limits and closed seasons) and the importance of fish spawning aggregations
- Examine ecosystem impacts of overfishing and use fishing gears on benthic community structure
- Investigate source-sink dynamics to inform the placement of marine protected areas (MPAs) that also include high-quality habitats
- Complete national economic valuation studies that incorporate income, recreational and commercial fisheries data