Westinghouse Advanced Manufacturing Development & Needs

Advanced Manufacturing & Supply Chain Innovation Nuclear Energy Leadership Summit and Showcase
October 3, 2017

Clint Armstrong
Advanced Manufacturing Subject Matter Expert
Global Technology Development

armstrcb@westinghouse.com
Advanced Manufacturing Program Objectives

• Improve Westinghouse competitiveness, through the development and implementation of advanced manufacturing (AM) technologies
 • Drive cost reductions in Westinghouse manufacturing
 • Enable new products and services that provide innovative customer solutions
 • Leverage external funding sources and collaborative development
Additive Manufacturing / 3D Printing Development Efforts
Additive Manufacturing Development Objectives

• **Exploit the benefits of Additive Manufacturing**
 – Producing components with: Powder Bed Fusion, Binder Jetting, and Directed Energy Deposition AM technologies
 – Complex components required for performance gains
 – Obsolete and high value / lead-time components
 – Next gen plant components - SMR, LFR, …
 – Prototypes, mockups, jigs / fixture, tooling, etc.

• **Enable AM for key nuclear applications**
 – Material development & testing for in reactor use
 – Supporting the development of codes and standards

• **Development Needs:**
 – Additional material development and testing to support the development of code & standards
 – Cost effective, large scale equipment
 – AM suppliers with Nuclear programs
Component Development Efforts

- **Prototype components for advanced reactors and concept components**
 - AM design, manufacturing and testing

- **AM to enable performance gains**
 - Microchannel Heat Exchangers
 - Hydrogen Igniters
 - Impellers
 - Fuel Support Structures

- **Replacement Parts**
 - Developing reverse engineering / commercial dedication process for high value / high lead-time components
 - 3D laser scanning →
 - 3D model →
 - AM sand molds →
 - traditional casting
AM Materials Development

• Utilizing laser powder bed fusion AM technologies
• Currently the nuclear industry has limited irradiation performance information for AM materials
• 316L and Ni Alloy 718 material testing
 – Produced AM block and micro-tensile test specimens
 – Completed post-irradiation examination (PIE) at Westinghouse Churchill laboratory
• Zr development and AM feasibility
 – Collaborated with ATI, EOS and EWI to produce AM material
 – Currently irradiating specimens at MIT
 – DOE NSUF funding was awarded for PIE
• Thimble Plugging Device (TPD) selected as the first component to place in a commercial reactor
 – Currently completing manufacturing qualification
 – Targeting 2018 delivery
Hot Isostatic Pressing (HIP) & Diffusion Bonding Development Efforts
Hot Isostatic Pressing (HIP) & Diffusion Bonding Development Efforts

• **NEER Project (Innovate UK-funded effort)**
 – Focused on reusable tooling, HIP development and demonstration of nuclear components, and UK supply based development
 – Producing demonstration components
 • Reactor Vessel Internals (RVIs): Quickloc Upper Support Assembly
 • Control Rod Drive Mechanisms (CRDMs): Guide Funnel Extension
 • Valves: 4” Motor Operated Gate Valve Body and Bonnet

• **Producing multiple prototypes / mockups for next generation plants**

• **Development Needs:**
 – Additional material testing to expand ASME code
 – Large scale HIP capabilities
Advanced Welding Development Efforts
Advanced Welding Development Efforts

• **Collaborating on welding development efforts**
 – Hot wire laser welding (HWLW)
 – Hybrid laser GMAW
 – Laser and diode laser cladding
 – Partial vacuum electron beam (EBW)
 – Spray processes

• **Using emergent welding technologies to solve welding issues and reduce manufacturing costs**
 – RCP, RVI and CRDM cost reduction opportunities
 – Module fabrication
 – Weld distortion reduction and modeling

• **Development Needs:**
 – High efficiency, defect free welding processes
 • Reduce component and module fabrication time
 – Process automation and in-process inspection
Advanced Manufacturing Development Opportunities

• Collaboration with industry, universities and national labs on advanced manufacturing technology development efforts
 – Pursue external funding

• Coordination of nuclear advanced manufacturing technology, material and codes and standards development efforts
 – Nuclear advanced manufacturing roadmap development
 – Technology prioritization
 – Stakeholder involvement

• Development of advanced manufacturing suppliers with quality programs and nuclear culture

• Workforce development: design / manufacturing engineering, technology specialists, technicians,....
Questions?