
Automating Root
Cause Analysis
for Kubernetes
Applications

Automating Root Cause Analysis for Kubernetes Applications

The Problem

Building an Automated Root Cause Analysis System

Example: Application Performance Slowdown RCA

Conclusion

Learn More & Get Started

1

2

T A B L E O F C O N T E N T S

 3AUTOMATING ROOT CAUSE ANALYSIS FOR KUBERNETES APPLICATIONS

[1] ‘The State of Kubernetes 2022,’ VMware Tanzu, April 2022.
[2] ‘For want of a nail’ (the want of a nail leads to loss of the kingdom) https://en.wikipedia.org/wiki/For_Want_of_a_Nail

1Automating Root Cause Analysis
for Kubernetes Applications

The Problem
A 2022 survey [1] on the state of Kubernetes shows
it is now a mainstream technology for software
development and cloud adoption, with nearly half
of the current users expecting to grow the number
of clusters by more than 50%. At the same time,
ensuring performance guarantees when there are
continual changes in the application topology,
service additions or deletions, or changes in the code
(‘image’) behind a service, and a large number of
containers creates significant challenges to the Ops
or SRE teams. Because of the many dependencies
between microservices and between application
components and Kubernetes and underlying
infrastructure, diagnosing problems are more
complex in K8s applications. Even an innocuous
small change in Kubernetes deployment can lead
to an application slowdown or worse a crash of the
business service. To paraphrase an old adage,
‘for want of a nail the battle can be lost[2].”

Building an Automated Root Cause
Analysis System
Trying to find an exact root cause in a large K8s
application is not easy or deterministic given the high
cardinality of interacting objects, the dynamism and
scale of the environment. Ops or SRE teams have
limited visibility into the state of the application in

real-time while they look through metrics, logs, traces,
or changes in deployments.

What we can do in an effective automated root cause
analysis (RCA) system is to quickly narrow down the
areas of the application and point the Ops team to
focus on a few components or objects that are the
likely cause—and surface the data and insights
relevant to the fault domain. We take inspiration
from how most expert SREs solve problems in war
rooms use their extensive experience and different
sources of information, including:

•	 Knowledge of IT stack, including
understanding of Kubernetes

•	 Spatio-temporal dependencies and local
interaction between connected services

•	 Dependencies on shared services
(PaaS, external API calls, IaaS, etc)

•	 Problem indications in infrastructure
(including changes) or in K8s deployment
or runtime events

•	 Metrics and related alerts

•	 Logs or events

•	 Errors detected in traces, if available

•	 Emergent or learned behavior of individual
services, using ML where needed

Figure 1: Dynamic decision tree approach to RCA

https://en.wikipedia.org/wiki/For_Want_of_a_Nail

 4AUTOMATING ROOT CAUSE ANALYSIS FOR KUBERNETES APPLICATIONS

•	 Utilizes discovered and learned aspects of
the application including topology and
dependencies, and expected behaviors of
service components

•	 Uses embedded curated knowledge of
known applications (databases, storage
systems, queuing systems, K8s)

•	 Selects a assessment plan depending on
the alert category (known application, K8s
or infrastructure) to follow a prescriptive
diagnostic workflow

The dynamic decision engine makes assessments
across all telemetry, dependency, alert details and its
analyses, configuration, etc. to eliminate areas that
are not relevant to the problem and isolate the fault
domain. An example will illustrate how the
automated RCA works.

In effect, an automated RCA system is an “SME in
a box” which determines the overall ‘state’ of the
application across all telemetry and eliminates
components that are not likely responsible for the
performance problem. We have implemented
automated RCA as a dynamic decision AI engine that:

•	 Analyzes the telemetry and alert details,
both explicit (e.g., failures, saturation) and
predictive from ML models

Example: Application Performance Slowdown RCA
We show how automated RCA works in isolating the cause of performance slowdown in a sample application
which is not instrumented for traces. The slowdown is detected using flow metrics from eBPF (note OpsCruise
uses only open source and OTel monitoring sources) and as shown below detects when the ingress service
‘nginx’ exceeds the preset SLO set at 4 seconds. Automated RCA dynamically creates the high latency path
chart that contains the anomalous services and containers.

Figure 3

Figure 2

The dynamic decision engine
makes assessments...to eliminate
areas that are not relevant to the
problem and isolate the fault domain.

 5AUTOMATING ROOT CAUSE ANALYSIS FOR KUBERNETES APPLICATIONS

To eliminate manual searching for the slow path, the automated RCA checks all paths from the ingress and
selects the highest latency path as shown above.

It is not surprising that the high latency path shows 4 other anomalous components, services and components,
that were discovered by OpsCruise’s anomaly detection mechanism[3] which does not require setting thresholds
or selecting metrics to monitor.

Examining these other alerts, we start examining the first one, ‘cartcache’, where the alert was detected by the
ML based on its learned behavior model showing that there are increased errors detected in the container and
that all traffic (L4 bytes or packets) interactions with the next container (“supply side”) has dropped to 0.

The next alert is on the ‘cartserver’ service which indicates an immediate problem: there are no pods behind
the service.

Following the causal path, we check the container and pods behind ‘cartserver’ reveals more specifics
on the reason for the anomaly: the container is in pending state due to a ImagePullBackOff alert detected
from Kubernetes.

Figure 4

Figure 5

[3] “Rethinking Anomaly Detection” https://www.opscruise.com/newsroom-post/ebook-on-rethinking-anomaly-detection

https://www.opscruise.com/newsroom-post/ebook-on-rethinking-anomaly-detection

 6AUTOMATING ROOT CAUSE ANALYSIS FOR KUBERNETES APPLICATIONS

...an automated RCA acts like
expert SREs who build on their
domain and diagnostic process
knowledge and pull all information,
telemetry from metrics to logs and
events (and traces) besides
configuration to isolate the cause.

Finally, checking the RCA tab indicates the real cause for the image backoff error: a bad image name that was
deployed creating a startup failure.

The full causal chain shown above is automatically detected by the RCA system when the initial SLO breach was
detected as the decision engine searched dependencies, related alerts, events and information provided by the
ML models. There was no need for Ops to dig through different alerts, events, metrics or flows, or try to construct
the causal spatial dependencies, or find the contextual linking between all of them. Recall there were no traces
available here either that are often the only way most Ops rely on to diagnose and solve performance problems.

Conclusion
We believe that troubleshooting performance issues
in K8s applications requires an automated RCA
system that can quickly identify and focus the Ops
team into a few components or objects that are the
likely cause—and surface the data and insights
relevant to the fault domain. In effect, an automated
RCA acts like expert SREs who build on their domain
and diagnostic process knowledge and pull all
information, telemetry from metrics to logs and
events (and traces) besides configuration to isolate
the cause. The benefit is a significant decrease in the
manual effort (“toil”) and time to resolution.

Figure 6

 7AUTOMATING ROOT CAUSE ANALYSIS FOR KUBERNETES APPLICATIONS

Learn More & Get Started

OpsCruise Intelligent Application Observability

OpsCruise’s patented intelligent application observability
platform is provided as a SaaS solution with gateways that
sit on your infrastructure and collect metrics, logs, traces and
configuration data from many popular open source monitoring
tools (e.g., Prometheus, Elastic, Loki, Jaeger, etc.).

Our platform’s deep understanding of Kubernetes, coupled with
our unique ML-based behavior profiling empowers your entire
team to predict performance degradations and instantly surface
their cause. All at a third of the cost of the current monitoring stack
and without the need to instrument code, deploy agents, or
maintain open-source tools.

Want to see Automated RCA for yourself?

1.	 Find your way to OpsCruise.com,

2.	 Sign up for our Free Forever offering,

3.	 Download the appropriate adapter(s) to plug into your
telemetry environment or deploy our OSS components using
standard Helm charts. You’ll be up and running in 5 min, and
within 24 hours, OpsCruise will learn your environment and
start generating highly enriched alerts with causal analysis.

GET STARTED

2

http://OpsCruise.com
https://www.opscruise.com/free-forever
https://www.opscruise.com/free-forever

