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Recent research points to weaknesses in some AI explanations 
due to oversensitivity. We run an experiment using our 
explainability approaches to demonstrate that with proper 
methods, AI explainability can be robust and reliable. 

This is especially important when it comes to machine learning 
applications within highly regulated industries, such as credit 
underwriting. The following white paper provides a refresher on 
explainability, a discussion of selection and use of references, 
and an analysis of an experiment run to demonstrate robustness 
in explainability, including distributional referencing, results, and 
conclusion.

Ours aren’t.

Some AI explanations 
can be unreliable
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If we are going to reap the accuracy and automation benefits of 
algorithmic decision-making, we have to trust that our AI models 
are accurate and comprehensible. At Zest AI we are focused on 
making machine learning safe to use in many applications, 
especially those subject to stringent regulations, starting with 
credit underwriting. Machine learning models can produce far 
more predictive credit decisions, but they have to be 
trustworthy. By law, banks and credit unions have to provide 
accurate reasons why they denied any applicant -- so called 
adverse action reasons. 

Further, fair lending regulation requires model developers 
identify drivers of algorithmic bias so they can mitigate them. 
Both require models to be highly explainable, and stakeholders 
must be assured that the explanations are correct. In this post 
we’re going to open the black box to “explain how we explain,” 
and then put our explainers to the test to show that they are 
robust and dependable. 

The way we explain an applicant’s credit score generated by 
one of our machine learning credit models is through 
decomposition, or the measuring of the positive or negative 
impact of each variable used by the model. The variables 
associated with the largest changes to the model’s score are 
deemed the most influential. Below is an example of an ML 
model decomposition showing eight credit variables, or 
features, and how they’re assigned positive or negative 
influence values, with a magnitude corresponding to how 
influential that feature was.
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Recent research in the machine learning community has suggested 
that, due to the nonlinear nature of model decision surfaces, resulting 
explanations may be overly sensitive and non-robust. In other words, if 
two rejected credit card applicants had nearly identical input features, 
e.g., inquiries, bankruptcies, income, etc. and both received nearly 
identical model scores (default risk predictions), they could be provided 
with different adverse actions. This has led researchers to question the 
accuracy of the underlying explanations and calls into question how 
accurate explainability technology really is.

As a company, we know that building reliable and 
explainable AI is possible. Our customers enjoy the 
benefits of such models today. All of our models go 
through rigorous testing, including sensitivity testing 
of explanations, and those tests have never 
uncovered any issues with explanation stability. 

After all, shouldn’t very 
similar people with very 
similar scores receive very  
similar explanations? 

That being said, this new research generated a bit of buzz, and so we 
wanted to double-check our model explanations did not fall prey to the 
same kinds of attacks the researchers reported in their work. 

What follows is the results of a series of experiments that tested the 
consistency of our explainability tools. The results show that Zest’s 
explainability software defends against the kind of “explanation 
sensitivity” reported by academics. 

To show how, we will first present a refresher on explainability and then 
demonstrate that our explanations are consistent and reliable.

https://arxiv.org/pdf/1710.10547.pdf
https://arxiv.org/pdf/1906.07983.pdf
https://en.wikipedia.org/wiki/Decision_boundary
https://arxiv.org/pdf/1710.10547.pdf
https://arxiv.org/pdf/1906.07983.pdf
https://en.wikipedia.org/wiki/Decision_boundary
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A Refresher on 
Explainability
The simplified example to the right shows how we can 
calculate the rate at which a model’s score changes when 
there’s a change in a feature’s value, in this case, debt-to-
income (DTI). In this example, we know that for this model, 
any increase in DTI value above zero will correspond to 
twice the risk for the borrower. This ratio is known as the 
partial derivative of the score with respect to that feature; 
the individual feature derivatives together are collectively 
referred to as a gradient. 

One might wonder whether measuring the gradient of a 
borrower’s score is enough to explain the underlying 
decision: after all, the influence of an individual’s features 
on a score could conceivably be measured by how that 
score changes as each feature is adjusted. We will show 
that it is not in fact sufficient. 

ML models, including neural nets, generate a massive 
number of feature combinations that form a high 
dimensional surface with sharp spikes and dips. These in 
turn yield complex gradients that change across the range 
of the feature values in inconsistent ways, in other words, 
they are not simple and linear. 

Consider, the case in which a borrower’s income happened 
to lie on a point of the model’s decision surface with a zero 
gradient, as can happen when the decision goes from a 
decreasing to increasing state (the slope has to cross zero 
at some point). When the derivative is taken with respect to 
income at that point, it will appear that the score does not 
change in that immediate neighborhood and consequently, 
the attribution to income will be zero. The explainer would 
ignore that feature in its analysis of the model, which is the 
wrong decision to make. Of course, income mattered.



6

A Refresher on Explainability

We, therefore, cannot simply measure the gradient of the 
model’s score for a borrower and hope to produce an 
explanation that truly reflects the importance of their features 
in the outcome. However, by exploiting the second 
fundamental theorem of calculus and introducing a reference 
to compare, we can avoid this issue. We create a straight line 
path from a “baseline” or “reference” borrower to another 
borrower whose score we want to explain, and average the 
model’s gradient along that path. The result is a breakdown of 
the difference in the baseline score and the point of interest’s 
score, in terms of individual feature contributions. In the 
univariate example to our left, the average model gradient 
from our baseline borrower (red) to our borrower of interest 
(orange) is multiplied by the difference of income values, 
which will add up to the difference in their scores (Δ). 

This can be understood as a “contextual” explanation, where 
one borrower is explained “in the context” of another. The 
explanation is a breakdown of why their scores were different. 
This approach is particularly useful in the credit space, where 
we often want to explain why one borrower was denied when 
another was accepted. 

A good analogy for these kinds of explanations is an 
evaluation of artwork. There is no such thing as an objective 
measure of quality in artwork, just like there is no such thing 
as one type of good or bad borrower. People, like art, are 
complex. Just as works of art are compared to other works of 
art to measure their relative quality, we can compare 
borrowers to other borrowers to explain why one is more or 
less risky than another. 

This explainability method (and variants of it) are known as 
“path- attribution” methods, owing to the fact that they 
attribute importance to features by adding up the gradients of 
the model’s score along a path from one borrower to another.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#Second_part
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#Second_part
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#Second_part
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#Second_part
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Selecting the 
Right Reference

The choice of which referential borrower to compare others to 
may seem innocuous, but this important decision can introduce 
significant bias to a score’s explanation. Just like there is no such 
thing as a monolithically “risky” or “safe” borrower, there is no 
such thing as an “average” borrower, and this is important. 

To illustrate, say a lender does decide to use a single baseline 
borrower as a reference in their explanation process, one who 
has the average value for each feature in the model. This 
borrower receives an average score from the model, so the 
lender believes they will be a suitable reference by which to 
explain rejected applications. Let’s say they make $50,000 a 
year. 

Now, another applicant making $50,000 applies, is scored by the 
model and then explained using the method described above, 
comparing this new applicant with the “average” baseline. 

Since the explainer is breaking down the score difference 
between the baseline applicant and this new applicant based on 
the difference in their feature values, and there is no difference 
in their income (both have $50,000 incomes), it cannot possibly 
attribute any importance to income. No matter what decision the 
model makes, or what other characteristics that borrower has, 
their income will receive zero importance. Importance of income 
only registers when the feature deviates from the baseline. In 
real life, this is similar to not “seeing” water when you are 
swimming beneath the water’s surface (or not noticing the 
beautiful warm weather because it’s always beautiful and warm). 
It probably goes without saying, but an output that says income 
isn’t important is problematic: income is probably one of the 
most important features in the model.
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Selecting the Right References

Some refer to this problem as referential biasing, 
because the reference creates blindspots in the 
explanation. In the computer vision example shown, 
the explanation of what the model “saw” ignores the 
subject of each photo because the subject is black, 
just like the reference. 

For this reason, we at Zest choose to use distributional 
referencing when creating our explanations. Instead of 
using a single baseline borrower by which to judge 
other applicants, we draw a large sample of referential 
borrowers from the distribution on which the model 
learned. Recalling the art critic analogy, there is, of 
course, no single source of art by which others are 
judged. We compare each piece we see to the many 
we have seen before to recognize its merits and see 
where it is brilliant and where it falls short. 

By averaging attributions with respect to many 
‘referential’ borrowers, we mitigate potential bias from 
any one of the references and obtain an appropriate 
and coherent explanation.

Experimental Design
We tested our neural net explainability kit on 
Kaggle’s Lending Club Loan Data to ensure 
that the domain of the problem (image 
classification vs. credit analysis) did not have 
an impact on the sensitivity of our model. 
Furthermore, because two “applicants need to 
be nearly identical”, discrete variables (e.g., a 
loan term of 36 or 60 months) were dropped, 
as small perturbations do not exist for such 
features.

https://www.kaggle.com/wendykan/lending-club-loan-data
https://arxiv.org/pdf/1911.11888.pdf
https://www.kaggle.com/wendykan/lending-club-loan-data
https://arxiv.org/pdf/1911.11888.pdf


Experimental Design

We created a predictive neural net model, and implemented the path- 
attribution “attack” presented in the paper “Explanations Can be Manipulated 
and Geometry is to Blame.” In our case, this technique attempts to find the 
optimal (and slightest) adjustment to an applicant’s input features such that 
the model’s decision doesn’t change, but the explanation for that decision 
does. 

The manipulated borrower that is generated from this process is referred to 
as “adversarial” to its original; its explanation is referred to as the “adversarial 
explanation” of the original. Technical details follow for those who are 
interested, though the next paragraph is not necessary for understanding the 
results of our experimentation. 

The authors of the paper suggest a novel gradient-based approach for 
identifying an adversarial explanation, wherein one example (in their case, an 
image) is manipulated such that its explanation matches an arbitrary target 
(often the explanation of another image in the dataset) The loss function 
minimized in the attack combines the difference between the feature space 
of the manipulated example and the original example (ensuring that the 
original image and the perturbed image are similar) and the difference 
between the explanation of the manipulated example and the target 
explanation to be copied (ensuring that the resultant explanation is different 
than the original.) Below is the loss function in detail; x is an original input to 
the model, xadv is the manipulation of x, g() is the model, and h() is the 
explainer (ht is a target explanation, and 𝛾 is a tradeoff hyperparameter): 

An adverse explanation can then be found with a simple gradient-descent 
algorithm. 

The key idea is that the original borrower and adverse borrower have to be 
inherently similar in their input features, they have to receive the same score 
from the model, and they have to have different explanations. That will point 
to inherent unreliability in the attribution. Our initial attack (the results of 
which are discussed below) only utilized a single reference point in the 
explanations for consistency with the original paper. 9

https://arxiv.org/pdf/1906.07983.pdf)
https://arxiv.org/pdf/1906.07983.pdf)
https://arxiv.org/pdf/1906.07983.pdf)
https://arxiv.org/pdf/1906.07983.pdf)
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Results

In the figure below we compared the explanations of an original data point 
(an applicant) and its adversarial counterpart. For perspective, the original 
applicant’s explanation is on the left and the adversarial explanation is on the 
right. Within each image, each rectangular block represents a different credit 
feature, with the color shade representing different explanation values 
(effectively a heatmap of each feature’s attribution, arranged in a rectangular 
shape). Clearly, the adversarial explanation is different from the original. In 
other words, these applicants, if both denied, would have received very 
different adverse action notices. 

Also, notice that the model scores (predictions; g(x)) of each are similar too; 
both around 0.29~0.30. 

To measure the similarity between our original borrower and its adverse 
counterpart, or in other words, to determine whether these two individuals 
were actually similar and should have received similar explanations, we took a 
look at how different a manipulated explanation is from our original with 
respect to the explanations of other points that scored similarly. We looked at 
a narrow band of borrowers that scored the same (0.29) as our original and 
adversary, and graph their difference in the score space and explanation 
space. The results are shown below:
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Summary

In the plot on the right above, the Y-axis represents the distance in the 
explanation space (using an L2 norm) from the original point we manipulated 
to others that scored within 0.5% of it, and the X-axis represents the same 
distance but in the input (feature) space.  

Essentially, it measures how “relatively similar” the points that scored 0.29 
were in these two spaces. The blue dot on the lower left of the graph is our 
original point, and the red is its adversary. 

We can see that the adversarial point is closer in the feature space to our 
original than any other point in the training set with the same score, by a 
significant margin. However, in the explanation space, it’s fairly far -- certainly 
far enough that the original and adversary are clearly “different” borrowers 
from an explanation perspective. This is likely a result of the rich features 
available in credit underwriting which make it rather hard to fool the explainer. 

The data used in the paper was image data, which only has pixel values 
representing color. By contrast, credit datasets include many de- correlated 
attributes from diverse data sources like credit reports, transaction history, 
alternative data, and application data. Nevertheless, we still note the 
adversary is much closer to the original point than all other points from the 
scores in this slice. 

It is not impossible that for certain applicants in the dataset that this gap is 
further reduced, i.e., the adversary has a similar score, similar features, but a 
different explanation. This is the situation we are seeking to mitigate.
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Summary

To prevent such situations from occurring, and because we already know that 
adding references helps avoid the referential bias problem, we increased the 
number of references and re-ran the experiment, to gauge the effect of 
distributional referencing on improving the robustness of the explanation. The 
results are displayed below: 

As the number of references increases, so too does the distance in the 
feature space between the original borrower and of the resulting manipulated 
borrower. It is harder and harder for the algorithm to find a borrower that 
scores similarly to our original and has a different explanation, without 
significantly changing the original feature space. This is the desired result. 

It is fine that two borrowers have the same score and have different 
explanations. However, it ought to be because they have significantly 
different feature values, not that they merely lie in a part of the model’s 
surface that is sensitive to noise. Beyond ten references, we were unable to 
find such a borrower. 

In effect, distributional referencing prevents us from being able to “fool” our 
explainer, and helps ensure that Zest-powered explanations are stable, in 
addition to being accurate. 

These experiments show that distributional referencing techniques, like the 
ones we employ here at Zest, are robust. The reference populations we use 
at Zest typically contain thousands of data points.



Robust Explainability 
in AI Models

Special White Paper

Conclusion

There has been a recent focus on ensuring the robustness of machine 
learning model predictions, and we hope to see this focus extend to 
the robustness of explainers, particularly in high-stakes applications 
where robust explainability is mandatory. In financial services, 
businesses rely on model analysis like we describe above to power 
consumer notices and to determine whether a model has bias and 
which features cause it. As such, it’s important the methods used to 
explain model results are robust and accurate.

For more information, say hello@zest.ai.


