
SMART CONTRACT AUDIT

October 13th, 2021 | v. 1.0

98
Score

PASS
Zokyo's Security Team has
concluded that these smart
contracts pass security qualifications
and are fully production-ready

This document outlines the overall security of the Gamestation smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Gamestation smart contract
codebase for quality, security, and correctness.

. . .

1

Gamestation Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 100%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and
rapidly changing environment, we at Zokyo recommend that the Gamestation team put in
place a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

. . .

2

Gamestation Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Complete​ ​Analysis

10Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

10Tests written by Gamestation team

21Tests written by Zokyo Secured team

3

Gamestation Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract's source code was taken from the Gamestation repository.

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Repository:
https://bitbucket.org/applicature/tokengear.contracts/src/gamestation-audit-20-08-2021/

Last commit:
fed31e9bc3d5fad5f7b4384373a32a886b557c4b

Contracts under the scope:
GamestationBridge

https://bitbucket.org/applicature/tokengear.contracts/src/gamestation-audit-20-08-2021/

4

Gamestation Contract Audit

. . .

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of smart contracts. To do so, the code is reviewed line-by-line by our
smart contract developers, documenting any issues as they are discovered. Part of this work
includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Summary

. . .

5

Gamestation Contract Audit

Zokyo security team has conducted a smart contract audit of the given codebase.

During the process, we have found several issues. Among them were findings with high,
medium, and low severity levels. No critical issues were identified.

The Gamestation team has taken into consideration all recommendations and successfully
fixed the issues found. Hence, the contract bears no secure or operational risk to the contract
owner or the end-user.

Based on the provided codebase and the outcome of this audit, we can state that the
contracts are fully production-ready.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

Gamestation Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Complete​ ​Analysis

. . .

7

Gamestation Contract Audit

high

The owner will be able to remove the token in the case when the liquidity is not zero and
when the owner will try to call the adminWithdraw() for the deleted token it would be
impossible to withdraw that token from the contract balance.

Re-audit
The issue related to removing the supported tokens was fixed in the function
removeSupportedToken(). The function adminWithdraw() was deleted.

medium

Solidity fileі has no license declaration.

Recommendation:
Specify license in every Solidity file.

low

In the constructor, there is no check if the length of the array's tokensToSupport_ tokensInfo_ is
the same. It can be the reason for the incorrect behavior.

medium

In the function addSupportedToken() there is no check if the added token is already on the list.
There is a possibility to call the function with the same address of the token and rewrite the
info about the current token.

. . .

8

Gamestation Contract Audit

low

In the function withdraw(), addLiquidity(), adminWithdraw() there is no check if the requesting
token is supported.

Recommendation:
Add checking if the token is supporting:

require(supportedTokens.contains(tokenAddress_), “Token is not supported”)

. . .

9

Gamestation Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

GamestationBridge

. . .

Tests written by Gamestation team

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

10

Gamestation Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

FILE

contracts\

FixedSwap.sol

UNCOVERED LINES

GameStationBridge.sol

Vesting.sol

VestingFactory.sol

contracts\interfaces\

All files

294

IERC20Mintable.sol

IFeeDistributor.sol

IGameStationBridge.sol

contracts\mock\

MockFeeDistributor.sol

contracts\tokens\

GameStationToken.sol

wGameStationToken.sol

contracts\utils\

26, 30, 42

AttoDecimal.sol

TwoStageOwnable.sol

95.71

100.00

% STMTS

99.07

97.64

93.33

100.00

81.19

100.00

100.00

100.00

100.00

100.00

86.36

100.00

72.73

22.08

15.79

40.00

89.40

100.00

% BRANCH

98.33

84.29

75.00

100.00

77.49

100.00

100.00

100.00

100.00

100.00

75.00

100.00

50.00

23.08

14.29

33.33

94.58

100.00

% FUNCS

100.00

95.00

83.33

100.00

80.07

100.00

100.00

100.00

100.00

100.00

83.33

100.00

66.67

22.45

17.07

50.00

97.49

99.04

100.00

93.33

97.60

100.00

% LINES

82.48

100.00

100.00

100.00

100.00

100.00

88.46

100.00

26.47

76.92

47.37

18.37 ... 184, 185, 197

117, 354, 403

20

... 41, 42, 43, 44

. . .

11

Gamestation Contract Audit

Test Results

Contract: FixedSwap

✓ should create simple pool correctly
✓ createSimplePool should fail if set wrong ending timestamp
✓ createSimplePool should fail if set fee which higher than 100

✓ should create interval pool correctly
✓ should fail creating interval pool if immediately unlocking part value is not valid
✓ should fail creating interval pool if interval unlocking part is not valid
✓ should fail creating interval pool if interval starting timestamp is less than last interval

starting timestamp
✓ should fail creating interval pool if last unlocking part is not equal to one
✓ should create interval pool correctly if startsAt will be bigger than timestamp
✓ should fail creating interval pool if ending timestamp is less than starting
✓ should fail creating interval pool if fee is equal 100%

✓ should create linear pool correctly
✓ should fail creating linear pool if linear unlocking less than or equal to pool

ending timestamp

✓ should return pool properties
✓ should fail return pool properties if pool does not exist

✓ should return interval pool properties
✓ should fail return interval pool properties if pool does not exist
✓ should fail return interval pool properties if pool is not interval

✓ should return linear pool properties
✓ should fail return linear pool properties if pool does not exist
✓ should fail return linear pool properties if pool is not linear

✓ should return pool state

✓ should return pool type and account state

. . .

12

Gamestation Contract Audit

✓ should return account state, complex account state and count of unlocked intervals

✓ should return account state, complex account state and immediately unlocked amount

✓ should return collected fees of the token

✓ should increase the pool token issuance by amount correctly
✓ should fail increasing the pool token issuance if amount is zero
✓ should fail increasing the pool token issuance if amount exceeds issuance limit
✓ should fail increasing the pool token issuance if amount exceeds issuance limit
✓ should fail increasing the pool token issuance if caller is not the owner

✓ should create new payment limit correctly

✓ should change payment limit correctly
✓ should fail changing payment limit if limit index does not exist

✓ should set limit for accounts correctly
✓ should setting limit for accounts if accounts are not provided
✓ should set limit for accounts if accounts already have limit with this index

✓ should make swap with payment amount and issuance amount
✓ should fail swap if requested payment amount is zero
✓ should fail swap if pool is not started yet
✓ should fail swap if pool is already ended
✓ should fail swap if pool does not have available issuance
✓ should fail swap if payment sum is bigger than payment limit
✓ should make swap correctly if payment sum and payment amount will be bigger

than payment limit
✓ should make swap correctly if issuance amount will be less than available amount
✓ should make swap correctly if calculated issuance amount equals zero
✓ should make swap correctly if calculated payment amount equals zero
✓ should make swap correctly if pool type is SIMPLE
✓ should make swap correctly if pool type is LINEAR
✓ should make swap correctly if issuance to withdraw will not be equal zero

✓ should unlock interval correctly
✓ should unlock interval correctly if issuance to Withdraw is not zero

. . .

13

Gamestation Contract Audit

✓ should fail unlocking interval if interval index does not exist
✓ should fail unlocking interval if interval has not started yet
✓ should fail unlocking interval if interval is already unlocked

✓ should unlock linear correctly
✓ should unlock linear correctly if withdrawal amount equals zero
✓ should fail unlocking linear if pool is not ended
✓ should fail unlocking linear if withdrawn issuance amount is less than issuance amount

✓ withdrawPayments should be failed if anyone hasn't sent any payments yet
✓ withdrawPayments should be failed if caller isn't owner
✓ withdrawPayments should widthdraw payments correctly

✓ withdrawUnsold should be failed if smartcontract hasn't ended yet
✓ withdrawUnsold should be failed if caller isn't owner
✓ withdrawUnsold should be failed if request wrong pool index
✓ withdrawUnsold should be failed if unsold payments don't exist
✓ withdrawUnsold should be withdraw correctly

✓ collectFee should be failed if request wrong pool index
✓ collectFee should be collect fee correctly

✓ withdrawFee should be failed if smart contract doesn't have collected fees
✓ withdrawFee should be failed if caller ins't owner
✓ withdrawFee should be withdraw fee correctly

✓ nominateNewPoolOwner should be failed if caller isn't owner
✓ nominateNewPoolOwner should be failed if owner tried to nominate himself
✓ nominateNewPoolOwner should be nominate new owner correctly
✓ nominateNewPoolOwner should be nominate new owner two times correctly

✓ acceptPoolOwnership should be failed if caller wasn't nominated like a new owner
✓ acceptPoolOwnership should be failed if request wrong pool index
✓ acceptPoolOwnership should be accept correctly

✓ should swap correctly if user is not added

. . .

14

Gamestation Contract Audit

Contract: GGToken
✓ has a name
✓ has a symbol
✓ has 18 decimals

✓ fail when transfer, burn when pause
✓ fail if call not owner
✓ fail if burning if allowance is less than amount

✓ returns the total amount of tokens

✓ returns zero

✓ returns the total amount of tokens

✓ reverts

✓ transfers the requested amount
✓ emits a transfer event

✓ transfers the requested amount
✓ emits a transfer event

✓ reverts

✓ transfers the requested amount
✓ decreases the spender allowance

✓ reverts

. . .

15

Gamestation Contract Audit

✓ reverts

✓ reverts

✓ reverts

Contract: GameStationBridge

✓ should be fail if signers array is empty
✓ should be fail if arrays have different lengths
✓ should be fail if fee is incorrect
✓ should be faile if incorrect liquidity is not zero
✓ Should correct initialized tokens types
✓ Should correct initialized tokens support address

✓ Should return false if not support
✓ Should return true if support

✓ Should return correct list
✓ Should return empty after all delete
✓ Should return correct list after add

✓ Should fail if caller not owner
✓ Should add correct signer

✓ Should fail if caller not owner
✓ Should get correct list

✓ Should fail if caller not owner
✓ Should fail if signer for delete not found
✓ Should fail if signers array after delete is empty
✓ Should correct delete signer

✓ Should correct set
✓ Should fail if caller not owner

✓ Should be correct set
✓ Should fail if caller not owner

. . .

16

Gamestation Contract Audit

✓ Should fail if caller not owner
✓ Should fail if Token is not supported
✓ Should correct delete and emit event

✓ Should fail if caller not owner
✓ Should fail if fee is more or equal then 100%
✓ Should fail token type out of range
✓ Should correct emit event on add and set coorect field
✓ Should correct emit and change field if add before

✓ Should fail if expected two amount on input
✓ Should fail if amount is not bigger than zero
✓ Should fail if token is not supported
✓ Should correct transfer amount if native
✓ Should correct transfer amount if token
✓ Should correct change liquidity field
✓ Should correct emit event

✓ Should fail if amount is zero
✓ Should fail if amount is more then liquidity amount
✓ Should correct withdraw native and emit event
✓ Should correct withdraw tokens and emit event

✓ token is not supported
✓ amount is zero when token is not native
✓ two amount is set
✓ amount is zero when token is native
✓ native not enougth

✓ native balance sc is empty
✓ erc20 sc is empty

✓ Should correct emit event
✓ Should correct transfer native to sc
✓ Should correct transfer native from user

. . .

17

Gamestation Contract Audit

✓ Should correct emit event
✓ Should correct transfer erc20 to sc
✓ Should correct transfer native from user

✓ Should correct emit event
✓ Should correct burn erc20
✓ Should correct transfer native from user

✓ Should correct emit event
✓ Should correct transfer erc20 to sc
✓ Should correct transfer native from user

✓ invalid signer when kyc is nedeed
✓ Should correct emit event
✓ Should correct transfer native to sc
✓ Should correct transfer native from user

✓ invalid signer when kyc is nedeed
✓ Should correct emit event
✓ Should call fee distributor
✓ Should correct transfer erc20 to sc

✓ Should correct emit event
✓ Should correct transfer native from sc
✓ Should correct transfer native to user

✓ Should correct emit event
✓ Should correct transfer erc20 to sc
✓ Should correct transfer native from user

✓ Should correct emit event
✓ Should correct burn erc20
✓ Should correct transfer native from user

✓ nonce used before

. . .

18

Gamestation Contract Audit

✓ invalid signer
✓ erc20 amount not enoufg if erc20 type
✓ native not enougth
✓ token is not supported
✓ Arrays have different lengths

✓ Should correct emit event
✓ Should correct transfer native from sc
✓ Should correct transfer native to user

✓ nonce used before
✓ invalid signer
✓ Arrays have different lengths

Contract: VestingFactory

✓ Should fail if user not owner
✓ Should correct transfer ownership

✓ Should return empty

✓ Should fail if user not have permisisons
✓ Should add if all ok
✓ Should emit event
✓ Should fail if exists for user

✓ Should fail if user not owner
✓ Should remove if all ok

Contract: Vesting
✓ GetInfo

✓ Should return 0, 0 if all allocation used
✓ Should get correct if remaning is less the max allocaiton
✓ Should success

. . .

19

Gamestation Contract Audit

✓ Should revert if caller not owner
✓ Should revert if vesting can't be started
✓ Should revert if Withdraw funds was called before
✓ No need to burn tokens when everything is sold
✓ Should correct transfer amount
✓ Should correct burn amount

✓ Should revert if caller not owner
✓ Should revert if arr length incorrect
✓ Should revert if vesting is started
✓ Should fail if not have enough allocation
✓ Should correct set amount
✓ Should correct change totalDeposited

✓ Should be fail if incorrect sign
✓ Should be fail if nonce used before
✓ Should be fail if vesting is started
✓ Should be can't transfer if is fiat
✓ Check correct transfer
✓ Check correct deposited
✓ Check correct totalDeposited
✓ Check set nonce

✓ if more then max allocation
✓ if more then min allocation
✓ if more then remaining allocation
✓ if more then remaining allocatio

✓ signer
✓ Should revert if total supply incorrect
✓ Should revert if rewardToken incorrect
✓ Should revert if deposite token incorrect
✓ Should revert if signer incorrect
✓ Should revert if token price incorrect
✓ Should revert if allocation incorrect

✓ Should revert if TGE is zero

. . .

20

Gamestation Contract Audit

✓ Should revert if TGE is set
✓ Should correct set TGE
✓ Should revert if call not owner

✓ Should return zero if zero deposited
✓ Should return all balance how locked, if vesting don't start
✓ Should return all unlocked balance if vesting started
✓ Should return correct after harvest and by month linear

✓ Should revert if vesting can't be started
✓ Should correct transfer amount

✓ When VESTING_TYPE is SWAP
✓ When VESTING_TYPE is INTERVAL
✓ When one user bouth all tokens
✓ More user with specific case

248 passing (3m)

. . .

Tests are written by Zokyo Security team

As part of our work assisting Gamestation in verifying the correctness of their contract code,
our team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the Gamestation
contract requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

21

Gamestation Contract Audit

Test Results

FILE

contracts\

UNCOVERED LINES

GameStationBridge.sol

All files

100.00

% STMTS

100.00

100.00

100.00

% BRANCH

100.00

100.00

100.00

% FUNCS

100.00

100.00

100.00

100.00

% LINES

100.00

Contract: GameStationBridge

✓ cannot deploy with incorrect fee
✓ cannot deploy with incorrect liquidity
✓ cannot revert if signers array is empty
✓ should revert if arrays have different lengths

✓ should check supported token correctly

✓ should return supported tokens correctly

✓ should return supported tokens correctly

. . .

22

Gamestation Contract Audit

✓ should remove signers correctly
✓ should revert if signer not found
✓ should revert if signer not found
✓ should revert if signers array is empty

✓ should set feeRecipient correctly

✓ should set feeDistributor correctly

✓ should add liquidity correctly
✓ should revert if input two amount
✓ should revert if amount is zero

✓ should withdraw correctly
✓ should withdraw correctly (NATIVE)
✓ should revert if amount is zero
✓ should revert if withdraw amount is greater than available amount
✓ should catch event

✓ should add supported token correctly
✓ should revert if fee more than 99
✓ should catch event

✓ should remove supported token correctly
✓ should revert if token is not supported

✓ should revert if token is not supported
✓ should revert if token is not supported
✓ should revert if input two amount
✓ should revert if amount is zero
✓ should revert if invalid signer
✓ should deposite correctly with kyc (ERC20)
✓ should catch event
✓ should deposite correctly with kyc (ERC20_MINT_BURN_V2)
✓ should deposite correctly with kyc (NATIVE/ERC20)

✓ should withdraw correctly (NATIVE)
✓ should catch event

. . .

23

Gamestation Contract Audit

✓ should withdraw correctly (ERC20)
✓ should withdraw correctly (ERC20_MINT_BURN)
✓ should withdraw correctly (ERC20_MINT_BURN_V2)
✓ should revert if nonce used before
✓ should revert if invalid signer
✓ should revert if token is not supported
✓ should revert if token is not supported

 44 passing (27s)

We are grateful to have been given the opportunity to work
with the Gamestation team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the Gamestation
team put in place a bug bounty program to encourage further
analysis of the smart contract by third parties.

