
SMART CONTRACT AUDIT

Nov 15th, 2021 | v.	1.0

99
Score

PASS
Zokyo Security Team has
concluded that this smart
contract passes security
qualifications and bear no
security or operational risk

This document outlines the overall security of the milestoneBased smart contracts, evaluated
by Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the milestoneBased smart contract
codebase for quality, security, and correctness.

. . .

1

milestoneBased Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 99%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and
rapidly changing environment, we at Zokyo recommend that the milestoneBased team put in
place a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

. . .

2

milestoneBased Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Complete​ ​Analysis

11Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

11Tests written by milestoneBased team

16Tests written by Zokyo Secured team

3

milestoneBased Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract's source code was taken from the milestoneBased repository.

. . .

Repository:
https://bitbucket.org/applicature/milestonebased.contracts/src/release-v1/

Last commit:
31dddb3

Contracts under the scope:

Voting;
SingleSignVotingStrategy;
Roadmap;
MilestoneBased;
IVotingStrategy.

https://bitbucket.org/applicature/milestonebased.contracts/src/release-v1/
https://bitbucket.org/applicature/milestonebased.contracts/commits/31dddb3e62ce17d74b876e0f9172b1a500b8a221
https://bitbucket.org/applicature/milestonebased.contracts/src/release-v1/contracts/Voting.sol
https://bitbucket.org/applicature/milestonebased.contracts/src/release-v1/contracts/SingleSignVotingStrategy.sol
https://bitbucket.org/applicature/milestonebased.contracts/src/release-v1/contracts/Roadmap.sol
https://bitbucket.org/applicature/milestonebased.contracts/src/release-v1/contracts/MilestoneBased.sol
https://bitbucket.org/applicature/milestonebased.contracts/src/release-v1/contracts/interfaces/IVotingStrategy.sol

4

milestoneBased Contract Audit

. . .

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of smart contracts. To do so, the code is reviewed line-by-line by our
smart contract developers, documenting any issues as they are discovered. Part of this work
includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Summary

. . .

5

milestoneBased Contract Audit

Zokyo security team has conducted a security audit for the given list of smart contracts. The
contracts are in good condition. They are well written and structured. All the issues and
vulnerabilities found are presented in the “Complete Analysis” section of this report.

Among them, there are 2 issues with low severity and 3 informational issues. All of the
mentioned findings were successfully resolved by the milestoneBased team. After a review of
the fixes and comments, one issue was marked as not valid.

Zokyo security team states that the smart contracts bear no security or operational risks and
are full production-ready. Based on the quality of the codebase and the outcome of the audit,
the score is set to 99.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

milestoneBased Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Complete​ ​Analysis

. . .

7

milestoneBased Contract Audit

LOW

Function setTrustedSigner should do sanity checks even if the caller is the owner, the owner
can make mistakes too.

Recommendation:
Do a sanity check where you are checking if the new trusted signer has a different value from
the old one, to not set the same value twice and consume gas.

LOW

Function setUrl should do sanity checks even if the caller is the owner, the owner can make
mistakes too.

Recommendation:
Do a sanity check where you are checking if the new uri has a different value from the old one,
to not be able to set the same value twice and consume gas.

Informational

There are some known bugs in the older versions of solidity that have been fixed in the most
recent one, , it’s part of best practices to
always use the most recent updated version.

https://docs.soliditylang.org/en/latest/bugs.html

Recommendation:
Set the solidity pragma to the most recent one (=0.8.9).

https://docs.soliditylang.org/en/latest/bugs.html

. . .

8

milestoneBased Contract Audit

Informational

Event Withdrawn from Roadmap contract should index the recipient address too, to be able to
filter based on it.

Recommendation:
Make the recipient parameter indexed in the Withdrawn event.

Informational

Error messages should be more straightforward than just an abbreviation, even if there is
documentation to support them, openzeppelin way of handling them by adding the contract
source followed by a straight and short explanation it’s a good practice.

Recommendation:
Make error messages more human-readable and straightforward, look into how openzeppelin
contracts handle the error messages.

. . .

9

milestoneBased Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Voting

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Roadmap

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

MilestoneBased

. . .

10

milestoneBased Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

SingleSignVotingStrategy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

IVotingStrategy

. . .

Tests written by milestoneBased team

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

11

milestoneBased Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

FILE

contracts\

MilestoneBased.sol

97.56

100.00

% STMTS

93.00

100.00

% BRANCH

97.67

100.00

% FUNCS UNCOVERED LINES

97.64

100.00

Roadmap.sol

SingleSignVotingStrategy.sol

98.59

100.00

95.65

100.00

100.00

100.00

98.65 337

100.00

Voting.sol

contracts\interfaces\

96.36

100.00

90.00

100.00

93.75

100.00

96.49 270, 271, 326, 336

100.00

IVotingStrategy.sol.sol

contracts\mocks\

100.00

83.33

100.00

100.00

100.00

83.33

100.00

83.33

ERC20Mock.sol

VotingStrategyMock.sol

100.00

75.00

100.00

100.00

100.00

75.00

100.00

75.00 18

contracts\tests\

RoadmapTest.sol

60.00

100.00

25.00

100.00

100.00

100.00

66.67

Utils.sol 50.00 25.00 100.00 60.00 30, 40

100.00

% LINES

All files 96.30 90.38 96.08 96.43

. . .

12

milestoneBased Contract Audit

Test Results

Contract: Integration
✓ should go through first use case correctly

Contract: MilestoneBased

✓ should change implementation of roadmaps

✓ should initialize created roadmap with expected data
✓ should set roadmap mapping
✓ should emit event

Contract: Roadmap

✓ cannot funding if state is not funding
✓ should funding roadmap correctly
✓ should emit event on funding

✓ cannot withdraw if state is not funding
✓ cannot withdraw if caller is not admin
✓ cannot withdraw if voting status is suspended
✓ cannot withdraw if voting status is not correct in MilestoneStartDate funds release type
✓ should withdraw if voting status is correct in MilestoneStartDate funds release type
✓ cannot withdraw if voting status is not correct in MilestoneEndDate funds release type
✓ should withdraw if voting status is correct in MilestoneEndDate funds release type
✓ cannot withdraw more than milestone available funds
✓ should emit event on withdraw
✓ should be able to withdraw from admin

Contract: Voting

✓ should revert if not one U256 parameter
✓ should revert if not two B32 parameter
✓ should return true with a valid signature
✓ should return false with an invalid signature

✓ should revert if not owner

. . .

13

milestoneBased Contract Audit

✓ should actually change a trusted signer
✓ should emit event

✓ should revert if not owner
✓ should actually change a trusted signer
✓ should emit event

Contract: Voting

✓ should revert on options array length mismatch
✓ should revert on concrete option array length mismatch
✓ should revert if no options provided
✓ should actually create proposal
✓ should create consecutive proposals
✓ should emit creation event

✓ should revert if proposal does not exist
✓ should revert if too late to vote
✓ should revert if signature check failed
✓ should revert if option id is out of bounds
✓ should revert if voting for the same option
✓ should cancel previous vote
✓ should change voting power on a vote
✓ should change overall voting values on a vote
✓ should emit Vote event

✓ should revert if proposal does not exist
✓ should revert if too late to vote
✓ should revert if no vote exist
✓ should remove voting power and relative values
✓ should emit ProposalVoteCancelled event

✓ should revert on a reentrancy
✓ should fail if proposal does not exist
✓ should fail if called too late
✓ should fail if not maximum power option
✓ should fail if equal voting powers
✓ should fail if already executed
✓ should fail if voting power consensus is not reached

. . .

14

milestoneBased Contract Audit

✓ should fail if voters consensus is not reached
✓ should execute empty option
✓ should actually add milestone on an execute
✓ should actually add several milestones on an execute
✓ should emit ProposalExecuted event with expected data
✓ should correctly handle execution failure
✓ should execute empty option

✓ should return expected data

Contract: Roadmap
✓ cannot initialize twice
✓ should initialize correctly
✓ should initialize admin correctly

✓ cannot set if caller is not voting contract
✓ cannot set if address is zero
✓ cannot set in not Funding state
✓ should set correctly
✓ should emit event on set

✓ cannot set if caller is not voting contract
✓ cannot set if address is zero
✓ cannot set in not Funding state
✓ should set correctly
✓ should emit event on set

✓ cannot add if caller is not voting contract
✓ cannot add if in not Funding state
✓ cannot add if roadmap balance is less than required for the milestone
✓ cannot add if milestone already exists
✓ cannot add if start end date is 0
✓ cannot add if start end is later than end date
✓ should add correctly
✓ should add multi milestones correctly
✓ should emit event on add

✓ cannot update if caller is not voting contract
✓ cannot update if in not Funding state

. . .

15

milestoneBased Contract Audit

✓ cannot update non-existent milestone
✓ cannot update if start end date is 0
✓ cannot update already started milestone
✓ should update correctly
✓ should emit event on update

✓ cannot remove if caller is not voting contract
✓ cannot remove non existent milestone
✓ cannot remove if in not Funding state
✓ cannot remove already started milestone
✓ should remove correctly
✓ should emit event on remove

✓ cannot update if caller is not voting contract
✓ cannot update if in not Funding state
✓ cannot update if milestone does not exist
✓ cannot update back to Active
✓ cannot update back to Suspended in Finished Status
✓ cannot update to Finished in Suspended Status
✓ cannot update to Suspended in Suspended Status
✓ cannot update to Finished in Finished Status
✓ cannot update before start date
✓ should update to Suspended correctly
✓ should update to Finished correctly
✓ should emit event on update

✓ cannot update if caller is not voting contract
✓ should update to refunding state correctly
✓ cannot update back to funding state

113 passing (3m)

. . .

Tests written by Zokyo Security team

As part of our work assisting milestoneBased in verifying the correctness of their contract
code, our team was responsible for writing integration tests using the Truffle testing
framework.

Tests were based on the functionality of the code, as well as a review of the milestoneBased
contract requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

16

milestoneBased Contract Audit

Test Results

FILE

contracts\

MilestoneBased.sol

99.02

100.00

% STMTS

97.00

100.00

% BRANCH

100.00

100.00

% FUNCS UNCOVERED LINES

98.58

100.00

Roadmap.sol

SingleSignVotingStrategy.sol

98.59

100.00

97.83

100.00

100.00

100.00

98.58 337

100.00

Voting.sol

contracts\interfaces\

99.09

100.00

96.00

100.00

100.00

100.00

98.25 422, 425

100.00

IVotingStrategy.sol 100.00 100.00 100.00 100.00

% LINES

All files 99.02 97.00 100.00 98.58

Contract: MilestoneBased

✓ should create roadmap and voting contract by provided parameters correctly
✓ should catch event

. . .

17

milestoneBased Contract Audit

Contract: Roadmap

✓ should send tokens from sender to contract correctly
✓ should catch event
✓ should revert if state not Funding

✓ should revert if melistone does not withdrawable
✓ should revert if caller is not admin or voting
✓ should revert if amount of withdrawing tokens is greater than milestone balance
✓ should revert if voting status is suspended
✓ should withdraw fund from milestone correctly
✓ should catch event

✓ should revert if caller is not voting contract
✓ should revert if new refunding contract is zero address
✓ should change refunding contract correctly
✓ should catch event

✓ should revert if caller is not voting
✓ should revert if new voting contract is zero address
✓ should change voting contract correctly
✓ should catch event

✓ should revert if caller is not voting contract
✓ should revert if melistone already exist
✓ should revert if dates are incorrect
✓ should revert if amount of fund tokens for a milestone is greater than roadmap

balance without locked funds
✓ should add milestone correctly
✓ should catch event

✓ should revert if caller is not voting contract
✓ should revert if melistone does not exist
✓ should revert if new dates are incorrect
✓ should revert if milestone already started
✓ should update information about already existing milestone correctly
✓ should catch event

. . .

18

milestoneBased Contract Audit

✓ should revert if caller is not voting contract
✓ should revert if melistone does not exist
✓ should revert if milestone already started
✓ should remove milestone correctly
✓ should catch event

✓ should revert if caller is not voting contract
✓ should revert if melistone does not exist
✓ should revert if milestone has not started
✓ should revert if transitions of a voting status is not supported
✓ should update milestone voting status correctly
✓ should catch event

✓ should revert if caller is not voting contract
✓ should update roadmap state correctly and send all funds to refunding contract
✓ should catch Refunded event

✓ should return true if startDate is less than current time
✓ should return false if startDate is greater than current time

✓ should return true if endDate is less than current time
✓ should return false if endDate is greater than current time

Contract: SingleSignVotingStrategy

✓ should deploy with correct trusted signer address
✓ should deploy with correct signature generation resource url

✓ should revert if caller is not owner
✓ should set trusted signer correctly
✓ should catch event

✓ should revert if caller is not owner
✓ should set url correctly
✓ should catch event

. . .

19

milestoneBased Contract Audit

✓ should return url correctly

✓ should return true with a valid signature
✓ should return false with an invalid signature
✓ should revert if argumentsU256 not one
✓ should revert if argumentsB32 not two

Contract: Voting

✓ should add new propola correctly
✓ should revert if arrays have different length
✓ should revert if subarrays have different length
✓ should revert if targets array is empty
✓ should catch event

✓ should votes in proposal correctly
✓ should revote correctly
✓ should catch event
✓ should revert with invalid signature
✓ should revert with invalid optionId
✓ cannot vote with the same options

✓ should cancel vote correctly
✓ should revert if vote does not exist
✓ should revert if vote not in proposal time interval
✓ should catch event

✓ should execute an option in a proposal correctly
✓ should catch event
✓ should revert if proposal does not exist
✓ should revert if not maximum power option
✓ should revert if option already executed
✓ should revert if minConsensusVotingPower greater than total voting power in

this proposal
✓ should revert if minConsensusVotersCount greater than total voters in this proposal
✓ should revert with invalid callTargets

. . .

20

milestoneBased Contract Audit

✓ should return option count correctly
✓ should revert if proposal does not exist

✓ should return options correctly
✓ should revert if proposal does not exist

✓ should return proposals count correctly

✓ should return true if proposal exist
✓ should return false if proposal does not exist

✓ should return LockBeforeVoting time interval correctly
✓ should return Voting time interval correctly
✓ should return LockBeforeExecution time interval correctly
✓ should return Execution time interval correctly
✓ should return AfterExecution time interval correctly

✓ should return information about option with a maximum voting power
for proposal correctly

98 passing (1m)

We are grateful to have been given the opportunity to work
with the milestoneBased team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the milestoneBased
team put in place a bug bounty program to encourage further
analysis of the smart contract by third parties.

