
SMART CONTRACT AUDIT

Oct 22st, 2021 | v.	1.0

98
Score

PASS
Zokyo Security team has
concluded that the given smart
contracts passed security audit
and are fully production-ready

This document outlines the overall security of the Layer Zero smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Layer Zero smart contract codebase
for quality, security, and correctness.

. . .

1

Layer Zero Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 86.23%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and
rapidly changing environment, we at Zokyo recommend that the Layer Zero team put in place
a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

Table of Contents

. . .

2

Layer Zero Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Complete​ ​Analysis

18Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

18Tests written by Layer Zero team

24Tests written by Zokyo Secured team

3

Layer Zero Contract Audit

Auditing Strategy and Techniques Applied

. . .

The Smart contract's source code was taken from the Layer Zero repository.

Repository:
https://github.com/ryanzarick/LayerZero/commit/
a9af62a3d3f4c4b45e8ccce2dd2d067fe784350f

Last commit:
7ed3fd9ce07a6c0a78d621b016f16027ee58b62f

Contracts under the scope:

RelayerToken;
ChainlinkOracleClient;
Treasury;
Communicator;
Network;
Validator;
Relayer;
LayerZeroToken;
RelayerStaking;
ERC1363;
IERC1363Receiver;
IERC1363;
IERC1363Spender;
ILayerZeroEndpoint;
ILayerZeroTreasury;

ILayerZeroOracle;
ILayerZeroValidationLibrary;
ILayerZeroReceiver;
ILayerZeroValidator;
ILayerZeroRelayer;
LayerZeroPacket;
Buffer;
EVMValidator;
ECVerify;
EthereumDecoder;
MPT;
RLPDecode;
RLPEncode;
Decoder.

https://github.com/ryanzarick/LayerZero/commit/a9af62a3d3f4c4b45e8ccce2dd2d067fe784350f
https://github.com/ryanzarick/LayerZero/commit/a9af62a3d3f4c4b45e8ccce2dd2d067fe784350f

4

Layer Zero Contract Audit

. . .

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of smart contracts. To do so, the code is reviewed line-by-line by our
smart contract developers, documenting any issues as they are discovered. Part of this work
includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Summary

. . .

5

Layer Zero Contract Audit

The Zokyo team has conducted a security audit of the given codebase. The contracts provided
for an audit are well written and structured. All the findings within the auditing process are
presented in this document.

There were no critical issues found during the auditing process. High, medium, low, and
some informational issues were found. All of them were successfully resolved by the Layer
Zero team. After a review of the fixes and comments from the Layer Zero team, we decided to
mark some issues as not valid.

All the mentioned findings may have an effect only in the case of specific conditions
performed by the contract owner. We can give the score of 98% to the provided codebase.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

Layer Zero Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Complete​ ​Analysis

. . .

7

Layer Zero Contract Audit

unallocatedRewards value remains zeroed

HIGH

In RelayerStaking.sol, unallocatedRewards which is important to trigger
massUpdatePools(address _relayer) remains zero value for _relayer. Going through different
scenarios, it does not seem to be one in which the map is going to take a non-zero value.
onTransferReceived() is the function that updates this value and it is not triggered anywhere
inside the project (unless this is intended to be called by an outside arbitrary caller to mimic a
callback taking place on any transfer occurring on LayerZeroToken outside, is it ?).

This is part of the economic model of LayerZero which is not supposed to hinder the
functional operation of cross-chain transactions but it is still significant in terms of funds that
might be misallocated.

Recommendation:
onTransferReceived is the only function that updates the value of unallocatedRewards. As it is
part of ERC1363, it should be called by the LayerZeroToken via transferAndCall or
transferFromAndCall but contracts only call layerZeroToken.transfer() which does not trigger
onTransferReceived.

. . .

8

Layer Zero Contract Audit

relayerPoolInfo amount value remains zeroed

HIGH

In RelayerStaking.sol, rpi.amount which is an element of relayerPoolInfo normally starts as Zero
but undesirably remains zero. The issue becomes critical in massUpdatePools(address _relayer)
as it comprises this operation rpi.accLayerZeroPerShare = rpi.accLayerZeroPerShare.
add(poolAmount.mul(1e12).div(rpi.amount)); which divides by zero.

In a test scenario like this:

it.only("pendingLayerZero() - runs properly and returns correct value", async function() {

 //TODO: requires a scenario with stake and unstake

 let pid = 0;

 let ONE_TOKEN = ONE_HUNDRED_TOKENS.div(new BN(100));

 await this.mockERC20.mint(this.bob, ONE_HUNDRED_TOKENS); // 100 ETH

 await this.mockERC20.approve(this.relayerStakingWithTokenZock.address, ONE_HUNDRED_TOKENS,
{from: this.bob}) ;

 await this.layerZeroToken.mint(this.relayerStakingWithTokenZock.address, ONE_HUNDRED_TOKENS); //
100 ETH

 await this.relayerStakingWithTokenZock.add(new BN(10), this.mockERC20.address);

 await this.layerZeroTokenZock.setRelayerStaking(this.relayerStakingWithTokenZock.address);

 let tx = await this.layerZeroTokenZock.onTransferReceived(this.testAddr, this.testAddr, ONE_TOKEN,
this.relayer);

 expect(await this.relayerStakingWithTokenZock.unallocatedRewards(this.relayer)).to.be.bignumber.equal
(ONE_TOKEN);

 await this.relayerStakingWithTokenZock.stake(this.relayer, pid, ONE_TOKEN, {from: this.bob});

 expect(await this.mockERC20.balanceOf(this.relayerStakingWithTokenZock.address)).to.be.bignumber.
equal(ONE_TOKEN);

 let user = await this.relayerStakingWithTokenZock.userInfo(this.relayer, pid, this.bob);

 expect(user.amount).to.be.bignumber.equal(ONE_TOKEN);

 expect(user.rewardDebt).to.be.bignumber.equal(new BN(0));
 

 expect(await this.layerZeroToken.balanceOf(this.bob)).to.be.bignumber.equal(new BN(0));

. . .

9

Layer Zero Contract Audit

 await this.relayerStakingWithTokenZock.stake(this.relayer, pid, ONE_TOKEN, {from: this.bob});

 expect(await this.mockERC20.balanceOf(this.relayerStakingWithTokenZock.address)).to.be.bignumber.
equal(ONE_TOKEN.mul(new BN(2)));

 // TODO: expect equal ONE_TOKEN

 console.log(await this.layerZeroToken.balanceOf(this.bob));

});

Given that relayerStakingWithTokenZock is just the relayerStaking Contract being fed the L0

Token mock implemented by Zokyo distinctively from L0 Token implemented by L0. Similarly is
relayerStakingTokenZock.

The scenario:

Starts by triggering a transfer of layerZeroTokenZock which triggers the transfer
received inside relayerStaking which in turn assigns a value for unallocatedRewards;
Make sure unallocatedRewards is assigned;
Staking into relayerStakingWithTokenZock which triggers massUpdatePools that looks
for the unallocatedRewards and updates;
The procedure comes to this line which divides by rpi.amount hence doing the revert.

Recommendation:
We assume that there should be an update to relayerPoolInfo within the

relayerStaking Contract hence updating the amount. It is noticed that accLayerZeroPerShare is
getting updates to its value but not amount.

State change before the transfer of the funds

medium

In the RelayerStaking.sol file, in the massUpdatePools() function, update the state first before
transferring the funds. That is place 156 lines before 154 lines.

Recommendation:
Update the state first before transferring the funds.

. . .

10

Layer Zero Contract Audit

Null returned from the function

Medium

In MPT.sol, the function sliceTransform returns null in tests since a return statement is missing
from the body.

Recommendation:
Expectedly this function returns the value of newdata hence a return statement for that value
is required or add the literal on the function header to serve the same purpose.

Function not returning the expected output

Medium

In ECVerify.sol, the function ecverify should return the public address of the private key which
signed the message that is sent along with the signature as an argument to this function.
Despite that the logic seems correct but Geth prepends the message by \x19Ethereum Signed
Message:\n<length of message> as shown in

.
https://github.com/ethereum/go-ethereum/

issues/3731

Recommendation:
Prepend the message in the code body before applying ecrecover as follow (assuming size is
always 32 bytes):

require(v == 27 || v == 28);

bytes memory prefix = "\x19Ethereum Signed Message:\n32";

bytes32 prefixedHash = keccak256(abi.encodePacked(prefix, hash));

signature_address = ecrecover(prefixedHash, v, r, s); 

// ecrecover returns zero on error

require(signature_address != address(0x0), "ECVerify revert");

https://github.com/ethereum/go-ethereum/issues/3731
https://github.com/ethereum/go-ethereum/issues/3731

. . .

11

Layer Zero Contract Audit

Relayer passes through calls without verification

Medium

In RelayerStaking.sol, _relayer which refers to the Relayer Contract is passing through the
functions without being verified. Inside massUpdatePools(address _relayer) there’s an if
statement that acts like a way to verify the relayer in a sense. But this is still not enough since
_relayer is still referred to frequently in this contract in many functions while it can be entered
by a user as an invalid address.

Recommendation:
Add required statements to verify relayer. In this project, an independent relayer (not owned
by LayerZero) might still need to be registered by an authority in LayerZero like onlyOwner
unless there is another solution to verify the _relayer without needing authoritative
involvement from LayerZero which shall be better.

Comment:
Being a design choice by LayerZero team the issue is no longer relevant.

Function call need a privileged sender

Medium

In Network.sol, attackers might find it easy to make the oracle do misinformed actions by
calling notifyOracleOfBlock(uint16 _chainId, address _srcAddress) which does not require any
certain privilege to be called.

Recommendation:
Caller applications might be needed to save into a mapping data structure from which this
function requires the value to be called in order to be executed.

Comment:
Being a design choice by LayerZero team the issue is no longer relevant.

. . .

12

Layer Zero Contract Audit

Correcting the required statements to be more precise

LOW

Since the transactions would fail if the required condition is not satisfied it is recommended to
add a statement that justifies the reason for the failure of the transaction.

Recommendation:

1) In Treasury.sol file, in x`withdraw(), replace

require(success, "LayerZero Treasury: withdraw native failed")

with

require(success, "LayerZero Treasury: native asset withdraw failed")

2) In ChainlinkOracleClient.sol file, in withdraw(), replace

require(success, "Relayer: failed to withdraw")

with

require(success, "OracleClient: failed to withdraw")

3) In Relayer.sol file, in both getPrices() functions, the second argument userApplication
is unused;

4) In RelayerStaking.sol file, in onTransferReceived() function, replace

require(msg.sender == address(layerZeroToken), "ERC1363Payable: acceptedToken is not
message sender")

with

require(msg.sender == address(layerZeroToken), "RelayerStaking: acceptedToken is not message
sender")

5) In RelayerStaking.sol file, line 34, spelling mistake in the comments.

. . .

13

Layer Zero Contract Audit

Lock pragma to a specific version

LOW

Lock the pragma to a specific version, since not all the EVM compiler versions support all the
features, especially the latest one’s which are kind of beta versions, So the intended behavior
written in code might not be executed as expected.

Locking the pragma helps ensure that contracts do not accidentally get deployed using, for
example, the latest compiler which may have higher risks of undiscovered bugs.

Recommendation:
Lock the pragma to a specific version.

Stake does not check if the input _amount is nonzero

LOW

In RelayerStaking.sol, inside stake(address _relayer, uint256 _pid, uint256 _amount) _amount is
not verified if it is non-zero which might lead to unexpected errors.

Recommendation:
Requirement is needed for that.

. . .

14

Layer Zero Contract Audit

Several unused arguments

Informational

In Several Contracts:

1) Treasury.sol: getNativeFee(uint) no need to take an argument, argument passed in
Communicator.sol has no effect;

1) RelayerStaking.sol: set(): _withUpdate is unused variable;

3) Relayer.sol: getPrices(): userApplication and parameters not used in the function body.
This is in the two implemented getPrices() functions in this contract.

Recommendation:
This issue might be of considerable importance if these variables are meant to provide more
functionality, if that’s the case then variables needed to be used in the function bodies.

Comment:
Partner stated that the first point is of no use right now, hence the issue is irrelevant.
Regarding the second point, the partner resolved this one. To the third one partner stated
that Relayer.sol is just a simple implementation of a relayer contract and becoming a
reference to others who are implementing the relayer contract.

Error Message unclear

informatiomal

In Network.sol, revert message inside require a statement of updateBlockHeader(uint16
_remoteChainId, address _oracle, bytes calldata _blockHash, uint _confirmations, bytes calldata
_data) might be confusing.

Recommendation:
More descriptive and still short message for updateBlockHeader like `LayerZero: sender is not
approved by oracle`.

. . .

15

Layer Zero Contract Audit

Check balance before withdrawing

Informational

In Treasury.sol, withdrawNative() does not check the contract’s balance before the withdrawal.

Recommendation:
This issue does not affect the operation as the transaction still fails because there’s a required
statement checking the success of the operation after the call. Checking the balance though is
helpful as it provides information on why the call shall revert.

One function implementation for what might better be two

Informational

In Communicator.sol, writing two implementations in solidity for similar function calls is
sometimes needed. In this case, being discussed here, the contract operation in this call will
be saving gas if implemented as recommended. This snipped if(_zroPaymentAddress ==
address(0x0)) acts as a flag for send(uint16 _chainId, bytes calldata _destination, bytes calldata
_payload, address payable _refundAddress, address _zroPaymentAddress, bytes calldata
txParameters) which leads to two different calls in which one is payable and the other should
not be payable.

Recommendation:
Throw the common logic into one private function and implement two functions for both
cases in which one of them only is payable.

Comment:
Being a design choice by the LayerZero team the issue is no longer relevant.

. . .

16

Layer Zero Contract Audit

RelayerToken; 
ChainlinkOracleClient; 
Treasury; 
Communicator; 
Network; 
Validator; 
Relayer; 
LayerZeroToken;

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

RelayerStaking; 
ERC1363; 
IERC1363Receiver; 
IERC1363; 
IERC1363Spender; 
ILayerZeroEndpoint; 
ILayerZeroTreasury; 
ILayerZeroOracle.

. . .

17

Layer Zero Contract Audit

ILayerZeroValidationLibrary; 
ILayerZeroReceiver; 
ILayerZeroReceiver; 
ILayerZeroValidator; 
ILayerZeroRelayer; 
LayerZeroPacket; 
Buffer;

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

EVMValidator; 
ECVerify; 
EthereumDecoder; 
MPT; 
RLPDecode; 
RLPEncode; 
Decoder.

. . .

Tests written by Layer Zero team

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

18

Layer Zero Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

contracts/

ChainlinkOracleClient.sol ... 62, 64, 56, 73

Communicator.sol ... 265, 273, 281

LayerZeroToken.sol

Network.sol

ERC677Receiver.sol

MockLinkToken.sol ... 48, 49, 50, 56

MockOracle.sol

Relayer.sol 28

RelayerStaking.sol 186, 256, 295

Treasury.sol ... 40, 44, 45, 46

Validator.sol

contracts/ERC1363/

ERC1363.sol

IERC1363.sol

IERC1363Receiver.sol

IERC1363Spender.sol

contracts/chainlink/

... 4, 95, 96, 106

87.01

35.00

94.00

100.00

100.00

100.00

0.00

100.00

85.71

97.54

40.00

65.63

28.57

28.57

100.00

100.00

100.00

0.00

63.85

33.33

65.38

100.00

75.00

100.00

0.00

100.00

100.00

86.84

25.00

31.82

20.00

20.00

100.00

100.00

100.00

0.00

82.35

50.00

90.00

100.00

100.00

100.00

20.00

50.00

71.43

100.00

62.50

81.82

22.22

22.22

100.00

100.00

100.00

28.57

... 152, 154, 155

86.67

33.33

94.17

100.00

100.00

100.00

0.00

100.00

85.71

97.56

40.00

64.71

28.57

28.57

100.00

100.00

100.00

0.00

FILE UNCOVERED LINES% STMTS % BRANCH % FUNCS % LINES

. . .

19

Layer Zero Contract Audit

FILE UNCOVERED LINES% STMTS % BRANCH % FUNCS % LINES

Buffer.sol ... 495, 506, 527

EVMValidator.sol ... 46, 47, 51, 52

LayerZeroPacket.sol ... 52, 53, 54, 55

contracts/proof/lib/

contracts/interfaces/

ILayerZeroEndpoint.sol

ILayerZeroOracle.sol

ILayerZeroReceiver.sol

ILayerZeroRelayer.sol

ILayerZeroTreasury.sol

ILayerZeroValidationLibrary.sol

ECVerify.sol ... 25, 26, 29, 31

EthereumDecoder.sol ... 249, 254, 259

MPT.sol ... 228, 229, 231

RLPDecode.sol ... 333, 337, 338

RLPEncode.sol ... 223, 225, 264

contracts/proof/utils/

Decoder.sol 12, 16, 20

ILayerZeroValidator.sol

contracts/libraries/

46.30

0.00

0.00

0.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

100.00

31.25

50.00

0.00

100.00

0.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

0.00

0.00

0.00

0.00

0.00

100.00

100.00

100.00

33.33

44.44

0.00

0.00

0.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

100.00

34.78

44.62

0.00

0.00

0.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

0.00

0.00

0.00

0.00

0.00

100.00

0.00

100.00

31.52

All files 36.11 26.88 46.07 38.89

. . .

20

Layer Zero Contract Audit

ChainlinkOracleClient
✓ setLayerZero as non owner reverts
✓ setLayerZero as owner
✓ setLayerZero as owner, reverts if already has been set
✓ getPrice
✓ setApprovedAddress reverts for non owner
✓ setApprovedAddress and confirm for owner
✓ isApproved for approved and non approved addresses

Communicator
✓ is created properly
✓ reverts when non owner sets: layer zero fee
✓ setLayerZeroFee / get layerZeroFee
✓ reverts when non owner sets: relayer staking contract
✓ setRelayerStakingContract / get relayerStakingContract
✓ reverts when non owner sets: treasury contract
✓ setTreasuryContract / get treasuryContract
✓ reverts when non owner sets: default config for chainId
✓ setLibraryVersion reverts when greater than existing max version
✓ setLibraryVersion / getLibraryVersion
✓ setRelayer / getRelater
✓ setOracle / getOracle
✓ setOracle emits AppConfigUpdated
✓ setRelayer emits AppConfigUpdated
✓ setBlockConfirmations / getBlockConfirmations
✓ setBlockConfirmations emits AppConfigUpdated
✓ setLibraryVersion emits AppConfigUpdated
✓ send(), reverts if relayer fee not paid (native fee)
✓ send(), paying with native
✓ estimateNativeFees(), paying with ZRO
✓ estimateNativeFees(), paying with Native
✓ send(), paying with ZRO
✓ getAppConfig defaults
✓ getAppConfig non defaults
✓ receiveAndForward() event DestinationFailed emitted
✓ resendAndClearStoredPayload() event StoredPayloadCleared emitted

Test Results

. . .

21

Layer Zero Contract Audit

✓ receiveAndForward() success
✓ receiveAndForward() event StoredPayloadSaved emitted
✓ receiveAndForward() event DestinationFailed emitted
✓ resendAndClearStoredPayload() event StoredPayloadCleared emitted

LayerZeroToken
✓ token symbol
✓ token name
✓ token decimals

Network
✓ is created for local chain id
✓ setValidator reverts for non owner
✓ setValidator by owner and confirm it
✓ setCommunicator reverts for non owner
✓ setCommunicator by owner and confirm it
✓ setCommunicator 2 by owner and confirm it
✓ setEndpoint defaults to no bytes (its not set to anything) on deployment
✓ setEndpoint reverts for non owner
✓ setEndpoint by owner and dont allow setting more than once
✓ updateBlockHeader - oracle address isnt an oracle
✓ updateBlockHeader - called by non approved oracle
✓ updateBlockHeader and getBlockHeaderData
✓ getBlockHeaderDataHash
✓ getBlockHeaderConfirmations
✓ getApplicationConfiguration succeeds
✓ getApplicationConfiguration relayer, oracle, confirms, library
✓ notifyOracleOfBlock [example] reverts if communicator is not a contract
✓ notifyOracleOfBlock can be called by any owner
✓ notifyOracleOfBlock can be called by any eoa

Relayer
✓ created and is approved
✓ reverts when non owner sets approval
✓ owner sets approval
✓ reverts when non owner sets tx fees
✓ owner sets tx fees - todo

. . .

22

Layer Zero Contract Audit

RelayerStaking
✓ created with layerzero token
✓ onTransferReceived requires msg.sender is layerZeroToken
✓ onTransferReceived emits TokensReceived() - todo
✓ add() reverts for non owner
✓ add() emits PoolState updated event
✓ set() emits PoolState updated event
✓ add() adds a pool with the given alloc points and address
✓ add some pools and change them and ensure totalAllocPoints is accurate
✓ set() reverts for non owner
✓ setCooldownTime() reverts for non owner
✓ initial cooldown time > 0
✓ setCooldownTime() and read it
✓ setCooldownTime() emits CooldownUpdated event
✓ pauseRelayerWithdrawal() reverts for non owner
✓ pauseRelayerWithdrawal() emits event
✓ cannot stake (reverts) if relayer is paused
✓ slashRelayer() reverts for non owner
✓ slashRelayer() cannot slash amount of 0
✓ pendingLayerZero(address _relayer, uint _pid, address _user)
✓ massUpdatePools() any address can call
✓ harvest() anyone can call harvest

RelayerStaking [w/ starting 3 pools]
✓ stake pid 0 emits RelayerStake
✓ unstake pid 0 emits RelayerUnstake
✓ unstake pid 0 reverts if too much allocation points are unstaked
✓ claim reverts when paused
✓ claim with no tokens to claim reverts
✓ claim during cooldown reverts
✓ claim emits event
✓ emergency unstake pid 0 emits event
✓ alice and bob stake pid 0 for equal amounts
✓ alice and bob stake, unstake, and claim
✓ slashRelayer emits event
✓ dao relayer slashing

Treasury
✓ setNativeFee() reverts for non owner

. . .

23

Layer Zero Contract Audit

✓ approveTokenSpender() reverts for non owner
✓ withdrawToken() reverts for non owner
✓ withdrawNative() reverts for non owner
✓ setNativeFee() and getNativeFee()

Validator
✓ created for network
✓ setCommunicator - reverts as non owner
✓ setCommunicator - and confirm it, as owner
✓ setChainAddressSize - reverts as non owner
✓ setChainAddressSize - and confirm it, as owner
✓ setDefaultLibraryForChain - reverts as non owner
✓ getDefaultLibraryForChain - is 0x0 before ever being set
✓ setDefaultLibraryForChain - and confirm it, as owner
✓ addValidationLibraryForChain - reverts as non owner
✓ addValidationLibraryForChain - and confirm it, owner
✓ maxValidationLibrary defaults to 0
✓ maxValidationLibrary is incremented after library added
✓ notifyRelayer reverts if called by non network
✓ notifyRelayer emits HeaderReceived - todo
✓ send reverts when sent by non communicator

Validator (w/ network mock)
✓ send() emits Packet event

Validator - validateTransactionProof()
✓ validateTransactionProof - todo

119 passing (32s)

. . .

Tests written by Zokyo Security team

As part of our work assisting Layer Zero in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the Layer Zero
contract requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

24

Layer Zero Contract Audit

contracts/

ChainlinkOracleClient.sol 73

Communicator.sol

LayerZeroToken.sol

Network.sol

Relayer.sol

RelayerStaking.sol 186, 256, 295

Treasury.sol

Validator.sol

contracts/ERC1363/

ERC1363.sol

IERC1363.sol

IERC1363Receiver.sol

IERC1363Spender.sol

contracts/chainlink/

98.70

95.00

100.00

100.00

100.00

100.00

97.54

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

84.62

83.33

75.00

100.00

100.00

100.00

86.84

100.00

95.45

90.00

90.00

100.00

100.00

100.00

50.00

96.47

91.67

100.00

100.00

100.00

85.71

100.00

87.50

100.00

100.00

100.00

100.00

100.00

100.00

85.71

98.73

95.24

100.00

100.00

100.00

100.00

97.56

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

FILE UNCOVERED LINES% STMTS % BRANCH % FUNCS % LINES

. . .

25

Layer Zero Contract Audit

Buffer.sol 97, 210, 349

EVMValidator.sol

LayerZeroPacket.sol

contracts/proof/lib/

ERC677Receiver.sol

MockLinkToken.sol

MockOracle.sol

contracts/interfaces/

ILayerZeroEndpoint.sol

ILayerZeroOracle.sol

ILayerZeroReceiver.sol

ILayerZeroRelayer.sol

ILayerZeroTreasury.sol

ILayerZeroValidationLibrary.sol

ECVerify.sol 22

EthereumDecoder.sol ... 249, 254, 259

MPT.sol ... 169, 170, 174

RLPDecode.sol ... 216, 217, 221

48, 82, 91, 92, 93RLPEncode.sol

contracts/proof/utils/

Decoder.sol 20

ILayerZeroValidator.sol

contracts/libraries/

94.44

100.00

100.00

73.89

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

65.97

64.21

81.83

91.53

66.67

66.67

100.00

96.25

81.25

62.50

100.00

56.11

100.00

50.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

75.00

58.57

40.00

59.09

100.00

100.00

100.00

100.00

75.00

94.44

100.00

100.00

78.00

100.00

100.00

50.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

63.64

100.00

77.78

75.00

75.00

75.00

100.00

95.65

95.38

100.00

100.00

80.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

72.29

70.24

83.81

92.65

66.67

66.67

100.00

96.74

All files 86.23 69.08 90.45 90.15

FILE UNCOVERED LINES% STMTS % BRANCH % FUNCS % LINES

. . .

26

Layer Zero Contract Audit

Buffer Wrapper
✓ Deployed properly
✓ fromBytes() -
✓ truncate() - Makes buffer a Zero Buffer
✓ append() - append whole length of data
✓ append() - append part of length of data
✓ append() - reverts because append with invalid length of data
✓ writeUint8() - writes uint8 inplace according to offset
✓ appendUint8() - appends uint8 after end of buffer
✓ writeBytes20() - writes 20 bytes (typically address) into buffer inplace according of offset
✓ appendBytes32() - appends 32 bytes into buffer
✓ appendInt() - appends 32 bytes uint into buffer

ChainlinkOracleClient
✓ setLayerZero() - reverts when called by notOwner
✓ setLayerZero() - Called by owner
✓ setLayerZero() - Called by owner but reverts since it only sets once
✓ getPrice() -
✓ setApprovedAddress() - reverts when called by notOwner
✓ setApprovedAddress() - Called by owner, should set true approvedAddresses

for that address
✓ isApproved() - for approved and non approved addresses
✓ approveToken() - Called by Owner successfully
✓ approveToken() - reverts when called by notOwner
✓ setJob() - Called by Owner successfully and new value for Job added
✓ setJob() - Reverts when called by notOwner
✓ notifyOracleOfBlock()
✓ notifyOracleOfBlock() - Reverts when called by an unapproved caller

Communicator
✓ Deployed properly
✓ setLayerZeroFee() - reverts when called by notOwner
✓ setLayerZeroFee() - Called successfully by owner, value of fee checked to be changed
✓ setRelayerStakingContract() - reverts when called by non owner - sets: relayer

staking contract
✓ setRelayerStakingContract() - called successfully by owner

Test Results

. . .

27

Layer Zero Contract Audit

✓ setTreasuryContract() - reverts when called by notOwner
✓ setTreasuryContract() - called successfully by owner
✓ setDefaultConfigForChainId() - reverts when called by notOwner
✓ setDefaultConfigForChainId() - called successfully by Owner
✓ setLibraryVersion() - reverts when added version not compatible with maxVersion
✓ setLibraryVersion() - Called successfully
✓ setBlockConfirmations() - Called successfully
✓ setBlockConfirmations() - should emit event AppConfigUpdated
✓ setRelayer() - along with getRelayer()
✓ setOracle() - along with getOracle()
✓ setLibraryVersion emits AppConfigUpdated
✓ setDefaultTxParametersforChainId() - Called successfully
✓ send(), paying with native successfully: contracts receive funds / user refunded

extra amount
✓ send(), paying with native unsuccessfully: not enough value payment
✓ send(), paying with native unsuccessfully: very low value payment
✓ estimateNativeFees() - paying with ZRO
✓ estimateNativeFees() - paying with Native
✓ send() - paying with ZRO
✓ getAppConfig() - defaults
✓ getAppConfig() - non defaults

✓ receiveAndForward() - Called successfully
✓ receiveAndForward() - event StoredPayloadSaved emitted
✓ receiveAndForward() - event DestinationFailed emitted
✓ resendAndClearStoredPayload() - event StoredPayloadCleared emitted

Default configs for relayer, oracle, libraryVersion, blockConfirmations
✓ getLibraryVersion() - return default config
✓ getBlockConfirmations() - return default config
✓ getOracle() - return default config
✓ getRelayer() - return default config

ECVerify Wrapper
✓ Deployed properly
✓ ecverify() - verify that signed message is called by the verified signer
✓ ecverify() - same test with v=25

. . .

28

Layer Zero Contract Audit

ERC1363
✓ supportsInterface() -
✓ supportsInterface() - Unsupported Interface (should return false)
✓ transferAndCall() - Check ERC1363Receiver callback is successfully called
✓ transferFromAndCall() - Check ERC1363Receiver callback is successfully called
✓ transferAndCall() - Check ERC1363Receiver callback is successfully called with Data
✓ transferFromAndCall() - Check ERC1363Receiver callback is successfully called with Data
✓ approveAndCall() - Check ERC1363Receiver callback is successfully called
✓ approveAndCall() - Check ERC1363Receiver callback is successfully called with Data
✓ approveAndCall() - Reverts because receiver is not a contract
✓ transferAndCall() - Reverts because receiver is not a contract

EVMValidator
✓ network() / validator() - network and validator addresses are correct
✓ verifyReceipt() - testing that tx receipt is properly verified

✓ validateProof() - emitting event1
✓ validateProof() - emitting event2
✓ validateProof() - emitting event3

LayerZeroToken
✓ token symbol
✓ token name
✓ token decimals

MPT Wrapper for expandKeyEven & expandKeyOdd
✓ Deployed properly
✓ expandKeyEven() - adding zeros to the left of each nibble
✓ expandKeyOdd() - adding zeros to the left of each nibble (for odd number of nibbles)
✓ sliceTransform() - 0
✓ sliceTransform() - 1
✓ sliceTransform() - 2
✓ sliceTransform() - 3
✓ sliceTransform() - 4
✓ sliceTransform() - 5

Network
✓ Deployed successfully with correct local chain id
✓ setValidator() - reverts when called by notOwner

. . .

29

Layer Zero Contract Audit

✓ setValidator() - Reverts for setting to an invalid value
✓ setValidator() - Called by owner and confirm it
✓ setCommunicator() - reverts when called by notOwner
✓ setCommunicator() - Called by owner and confirm it
✓ setCommunicator() -2 - Called by owner and confirm it
✓ setCommunicator() - Reverts for setting to an invalid value
✓ setEndpoint() - defaults to no bytes (its not set to anything) on deployment
✓ setEndpoint() - reverts when called by notOwner
✓ setEndpoint() - Called by owner successfully - Shall not allow setting more than once
✓ updateBlockHeader() - Reverts as oracle address isnt an oracle
✓ updateBlockHeader() - Reverts since it is called by non approved oracle
✓ updateBlockHeader() / getBlockHeaderData()
✓ getBlockHeaderDataHash() -
✓ getBlockHeaderConfirmations() -
✓ getApplicationConfiguration() - Called successfully
✓ getApplicationConfiguration() - relayer, oracle, confirms, library
✓ notifyOracleOfBlock() - reverts when communicator is not a contract
✓ notifyOracleOfBlock can be called by any owner
✓ notifyOracleOfBlock can be called by any eoa

Contract: EthereumClient
✓ deploy
✓ receipt logs RLP encoding/decoding
✓ client - adding blocks

✓ receipt trie 0
✓ receipt trie 1
✓ receipt trie 2
✓ receipt trie 3
✓ receipt trie 4

Relayer
✓ created and is approved
✓ reverts when non owner sets approval
✓ owner sets approval
✓ reverts when non owner sets tx fees
✓ setTransactionFees() - owner sets tx fees
✓ setTransactionFees() - owner sets tx fees
✓ getPrices() -

. . .

30

Layer Zero Contract Audit

RelayerStaking
✓ created with layerzero token
✓ onTransferReceived requires msg.sender is layerZeroToken
✓ onTransferReceived emits TokensReceived() - todo
✓ add() reverts for non owner
✓ add() emits PoolState updated event
✓ set() emits PoolState updated event
✓ add() adds a pool with the given alloc points and address
✓ add some pools and change them and ensure totalAllocPoints is accurate
✓ set() reverts for non owner
✓ setCooldownTime() reverts for non owner
✓ initial cooldown time > 0
✓ setCooldownTime() and read it
✓ setCooldownTime() emits CooldownUpdated event
✓ pauseRelayerWithdrawal() reverts for non owner
✓ pauseRelayerWithdrawal() emits event
✓ cannot stake (reverts) if relayer is paused
✓ slashRelayer() reverts for non owner
✓ slashRelayer() cannot slash amount of 0
✓ pendingLayerZero(address _relayer, uint _pid, address _user)
✓ massUpdatePools() any address can call
✓ harvest() anyone can call harvest

RelayerStaking [w/ starting 3 pools]
✓ stake pid 0 emits RelayerStake
✓ unstack pid 0 emits RelayerUnstake
✓ unstack pid 0 reverts if too many allocation points are unstacked
✓ claim reverts when paused
✓ claim with no tokens to claim reverts
✓ claim during cooldown reverts
✓ claim emits an event
✓ emergency unstack pid 0 emits an event
✓ alice and bob stake pid 0 for equal amounts
✓ alice and bob stake, unstack, and claim
✓ slashRelayer emits an event
✓ dao relayer slashing

Treasury
✓ setNativeFee - and confirm it, as owner

. . .

31

Layer Zero Contract Audit

✓ setNativeFee - reverts as non owner
✓ payWithNative - reverts as value is not equal native fee
✓ payWithNative - passes as value is the equal native fee
✓ approveTokenSpender - approve amount for a spender
✓ approveTokenSpender - revert as the method is called by nonowner
✓ withdrawToken - withdraw token from the treasury
✓ withdrawToken - revert as the method is called by nonowner

Treasury - Dealing with Native
✓ withdrawNative - withdraw native from treasury to Alice
✓ receive() - contract receives native coins successfully
✓ withdrawNative - revert for fail native coin transfer
✓ withdrawNative - revert as method is called by non owner

Validator
✓ created for network
✓ setCommunicator - reverts as non owner
✓ setCommunicator - reverts for invalid address
✓ setCommunicator - and confirm it, as owner
✓ setChainAddressSize - reverts as non owner
✓ setChainAddressSize - and confirm it, as owner
✓ setDefaultLibraryForChain - reverts as non owner
✓ setDefaultLibraryForChain - reverts for invalid address
✓ getDefaultLibraryForChain - is 0x0 before ever being set
✓ setDefaultLibraryForChain - and confirm it, as owner
✓ addValidationLibraryForChain - reverts as non owner
✓ addValidationLibraryForChain - reverts for invalid address
✓ addValidationLibraryForChain - and confirm it, owner
✓ maxValidationLibrary defaults to 0
✓ maxValidationLibrary is incremented after library added
✓ notifyRelayer reverts if called by non network
✓ notifyRelayer emits HeaderReceived
✓ send reverts when sent by non communicator

Validator (w/ network mock)
✓ send() emits Packet event

Validator - validateTransactionProof()
✓ validateTransactionProof

. . .

32

Layer Zero Contract Audit

✓ validateTransactionProof reverts for false nonce
✓ validateTransactionProof reverts for not enough blockConfirmations
✓ validateTransactionProof reverts unset validation library
✓ validateTransactionProof reverts since _packet.dstAddress != _dstAddress
✓ validateTransactionProof reverts for false Relayer::isApproved

193 passing (9m)

We are grateful to have been given the opportunity to work
with the Layer Zero team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the Layer Zero team
put in place a bug bounty program to encourage further
analysis of the smart contract by third parties.

