
SMART CONTRACT AUDIT

September 2nd, 2021 | v.	1.0



100
Score

PASS
Zokyo’s Security Team has 
concluded that this smart 
contract passes security 
qualifications to be listed on 
digital asset exchanges



This document outlines the overall security of the IXS smart contracts, evaluated by Zokyo's 
Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the IXS smart contract codebase for 
quality, security, and correctness.

. . .

1

IXS Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 100%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of 
the contract, rather limited to an assessment of the logic and implementation. In order to 
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and 
rapidly changing environment, we at Zokyo recommend that the IXS team put in place a bug 
bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD



Table of Contents

. . .

2

IXS Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Complete​ ​Analysis

11Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

11Tests written by Zokyo Secured team



3

IXS Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract's source code was taken from the IXS repository.

. . .

Repository (archive hash):
015549c0b92df55ccc4ac0afdbd2ec867e7ab791

Last commit (archive hash):
649009b51ce9ceb2bed450f54e8f118a3e3da553

Contracts:

IxsToken.sol
IxsGovernanceToken.sol
IxsStakeBank.sol
IxsReturningStakeBank.sol
IXSVestedDistribution.sol



4

IXS Contract Audit

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify 
the implementation of IXS smart contracts. To do so, the code is reviewed line-by-line by our 
smart contract developers, documenting any issues as they are discovered. Part of this work 
includes writing a unit test suite using the Truffle testing framework. In summary, our 
strategies consist largely of manual collaboration between multiple team members at each 
stage of the review:

1
Due diligence in assessing the overall 
code quality of the codebase.

2
Cross-comparison with other, similar 
smart contracts by industry leaders.

3
Testing contract logic against common 
and uncommon attack vectors.

4
Thorough, manual review of the 
codebase, line-by-line.



Summary

. . .

5

IXS Contract Audit

There were no critical issues found during the audit. All the mentioned findings may have an 
effect only in case of specific conditions performed by the contract owner.

During the conducted investigation we found 2 issues with low severity. Both of them are 
resolved and bear no risk for the contract owner or end user. Zokyo team can state that the 
contracts are secure and bear no operational risk.



Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

IXS Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are 
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed. 
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or 
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the 
contract’s ability to operate.

Low

The issue has no impact on the contract’s 
ability to operate.

Informational​

The issue affects the ability of the contract 
to compile or operate in a significant way.

High

The issue affects the ability of the contract 
to operate in a way that doesn’t significantly 
hinder its behavior.

Medium

The issue affects the ability of the contract 
to compile or operate in a significant way.

Critical



Complete​ ​Analysis

. . .

7

IXS Contract Audit

Correcting the require statements to be more precise

LOW

Since the transactions would fail if the require condition is not satisfied, So it is recommended 
to add a statement which justifies the reason for failing of the transaction.

Recommendation:

1) In IXSVestedDistribution.sol file, in constructor(), replace

require(_owner != address(0), "IxsStakeBank: INVALID_OWNER")

with

require(_owner != address(0), "IXSVestedDistribution: INVALID_OWNER")

2) In IxsReturningStakeBank.sol, in stakeFor(), replace

require(MintableBurnableIERC20(returnToken).mint(user, amount), 'IxsStakeBank: MINT_FAILED')

with

require(MintableBurnableIERC20(returnToken).mint(user, amount), IxsReturningStakeBank: 
MINT_FAILED')



. . .

8

IXS Contract Audit

Lock pragma to specific version

LOW

In IxsToken.sol file, lock the pragma to a specific version, since not all the EVM compiler 
versions support all the features, especially the latest one’s which are kind of beta versions, So 
the intended behaviour written in code might not be executed as expected.

Locking the pragma helps ensure that contracts do not accidentally get deployed using, for 
example, the latest compiler which may have higher risks of undiscovered bugs.



. . .

9

IXS Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

IxsToken

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

IxsStakeBank

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

IXSVestedDistribution



. . .

10

IXS Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

IxsGovernanceToken

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

IxsReturningStakeBank



. . .

11

IXS Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests written by Zokyo Security team

As part of our work assisting IXS in verifying the correctness of their contract code, our team 
was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the IXS contract 
requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

Test Results 

FILE

contracts\

IXSVestedDistribution.sol

UNCOVERED LINES

All files

IxsGovernanceToken.sol

IxsReturningStakeBank.sol

IxsStakeBank.sol

IxsToken.sol

100.00

100.00

% STMTS

100.00

100.00

100.00

100.00

100.00

93.14

92.86

% BRANCH

93.14

100.00

83.33

93.75

100.00

100.00

100.00

% FUNCS

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

% LINES

100.00

Contract: IxsStakeBank

✓ cannot deploy with zero owner address
✓ cannot deploy with zero token address



. . .

12

IXS Contract Audit

✓ should stake tokens correctly
✓ cannot stake with low allowance
✓ should unstake tokens correctly
✓ cannot unstake if amount of tokens to unstake more than total staked
✓ should return staking history for address correctly
✓ should return total staked correctly
✓ should return total staked for address correctly 
✓ should return first staked block for address correctly
✓ should return last staked block for address correctly
✓ should return total staked for address at block correctly
✓ should return total staked for address at time correctly
✓ should return the total tokens staked at block timestamp correctly
✓ should return minimal amount of tokens staked between block timestamps

 for address correctly

Contract: IxsReturningStakeBank

✓ should deploy with correct returnToken address
✓ cannot deploy with zero returnToken address 
✓ cannot deploy with the same tokens

✓ should stake tokens correctly 
✓ should unstake tokens correctly

Contract: IxsToken

✓ should deploy with correct token name
✓ should deploy with correct token symbol
✓ should deploy with correct decimals
✓ should deploy with correct total supply 
✓ cannot deploy with zero treasury address

✓ should mint tokens correctly 
✓ cannot mint more tokens than max supply

Contract: IxsGovernanceToken

✓ should deploy with correct token name



. . .

13

IXS Contract Audit

✓ should deploy with correct token symbol
✓ should deploy with correct decimals
✓ cannot deploy with zero owner address

Contract: IXSVestedDistribution

✓ should deploy with correct token address
✓ cannot deploy with zero token address
✓ cannot deploy with zero owner address

✓ should distribute tokens correctly
✓ cannot distribute if investor is vesting
✓ cannot distribute with zero amount
✓ cannot distribute with zero vesting period
✓ cannot distribute if vesting duration less than cliff
✓ cannot distribute with insufficient supply 

✓ should add funds correctly
✓ cannot add funds with zero amount
✓ cannot add funds for unknown investor
✓ cannot add funds with insufficient supply

✓ should return available claim correctly
✓ should batchClaimFor correctly
✓ should claimFor correctly

✓ should return payouts correctly
✓ cannot check vesting with zero investor address
✓ cannot return details for unknown investor

50 passing (38s)



We are grateful to have been given the opportunity to work 
with the IXS team.



The statements made in this document should not be 
interpreted as investment or legal advice, nor should its 
authors be held accountable for decisions made based 
on them.



Zokyo's Security Team recommends that the IXS team put in 
place a bug bounty program to encourage further analysis of 
the smart contract by third parties.


