
SMART CONTRACT AUDIT

Mar 23, 2021 | v.	1.0

GOOD

PASS
Zokyo’s Security Team has 
concluded that this smart contract
passes security qualifications to be
listed on digital asset exchanges.

This document outlines the overall security of the DeltaHub smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the DeltaHub smart contract codebase
for quality, security, and correctness.

There were no critical issues found during the audit.

Contract Status

LOW Risk

. . .

1

DeltaHub Smart Contract Audit

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation.

Testable Code

Testable code is 100%, which is above the industry standard of 95%.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

3Auditing Strategy and Techniques Applied

4Summary

5Structure​ ​and​ ​Organization​ ​of​ ​Document

6Complete​ ​Analysis

9Tests are written by DeltaHub and Zokyo’s Security teams

25Tests Written by Zokyo

9Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

2

DeltaHub Smart Contract Audit

3

DeltaHub Smart Contract Audit

Auditing Strategy and Techniques Applied

DeltaHub
632e0238db2e4f0c9d209cf099dd9e2c594b5c24

DeltaHub Pitch Deck

The Smart contract’s source code was taken from the repo commit –
. 

Requirements: .

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of DeltaHub smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

https://github.com/deltahubdev/deltahub-contracts
https://github.com/deltahubdev/deltahub-contracts/commit/632e0238db2e4f0c9d209cf099dd9e2c594b5c24
https://drive.google.com/file/d/1xtdr1jBEH4BOJm__SelvqXhgPwbCuPYC/view

Summary

. . .

4

DeltaHub Smart Contract Audit

There were no critical issues found during the manual audit and automated testing
analysis. The smart contracts are well-composed, operate as expected, and are
production-ready. It follows best practices in efficient use of gas, without unnecessary waste
all the methods are safe from known types of attacks.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

5

DeltaHub Smart Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Complete​ ​Analysis

. . .

6

DeltaHub Smart Contract Audit

Order of Functions

INFORMATIONAL

visibility and
order
The functions in DeltaHubStaking contract are not grouped according to their

.

Functions should be grouped according to their visibility and ordered in the following way:

constructor;
fallback function (if exists);
external;
public;
internal;
private.

Ordering helps readers identify which functions they can call and to find the constructor and
fallback definitions easier.

Recommendation:
Consider changing functions order.

Action Steps:
Order of FunctionsChange functions order according to solidity documentations: .

https://docs.soliditylang.org/en/v0.7.5/style-guide.html#order-of-functions
https://docs.soliditylang.org/en/v0.7.5/style-guide.html#order-of-functions
https://docs.soliditylang.org/en/v0.7.5/style-guide.html#order-of-functions

. . .

7

DeltaHub Smart Contract Audit

The next table shows how the reward will be calculated in the developed smart contract. Eg.
only one user stake.

Total reward: 100 
If a user unstake on day 7, he will get 70 tokens.

1

2

3

4

5

7

8

9

10

6

30

70

10

10

10

10

10

10

10

10

10

10

70 / 7

70 / 7

70 / 7

(40 + 30) / 7

(40 + 30) / 7

(40 + 30) / 7

(40 + 30) / 7

(40 + 30) / 7

(40 + 30) / 7

(40 + 30) / 7

dayset rewards reward calc

Calculations error up to 100 000 Wei

INFORMATIONAL

In the calculation of the reward for the users, there is a calculation error of up to 100 000 WEI.

Notice:
Templates of calculation reward

. . .

8

DeltaHub Smart Contract Audit

1

2

3

4

5

7

8

9

10

6

30

70

10

10

10

10 + 4.28

10 + 4.28

10 + 4.28

4.28

4.28

4.28

10 + 4.28

70 / 7

70 / 7

70 / 7

70 / 7 + 30 / 7

70 / 7 + 30 / 7

70 / 7 + 30 / 7

30 / 7

30 / 7

30 / 7

70 / 7 + 30 / 7

dayset rewards reward calc

The below table shows how the reward can be calculated in another way.

Total reward: 100

If a user unstake on day 7, he will get 87.12 tokens.

Make sure that you choose the correct template for calculating rewards.

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests are written by DeltaHub and Zokyo’s Security teams

Execution Report

. . .

9

DeltaHub Smart Contract Audit

As part of our work assisting DeltaHub in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the DeltaHub contract
requirements (for Audit) for details about issuance amounts and how the system handles
these.

. . .

10

DeltaHub Smart Contract Audit

Contract: DeltaHubStaking
✓ has a default owner
✓ lets a new owner change the message
✓ prevents non-owners from transferring
✓ should not allow enter if not enough approve
✓ should not allow withraw more than what you have
✓ should work with more than one participant
✓ Two stakers with the same stakes wait 1 w
1) Two stakers with the different (1:3) stakes wait 1 w

. . .

11

DeltaHub Smart Contract Audit

. . .

12

DeltaHub Smart Contract Audit

. . .

13

DeltaHub Smart Contract Audit

. . .

14

DeltaHub Smart Contract Audit

✓ Two stakers with the different (1:3) stakes wait 2 weeks

2) Three stakers with the different (1:3:5) stakes wait 3 weeks

. . .

15

DeltaHub Smart Contract Audit

. . .

16

DeltaHub Smart Contract Audit

. . .

17

DeltaHub Smart Contract Audit

. . .

18

DeltaHub Smart Contract Audit

✓ One staker on 2 durations with gap
3) Notify Reward Amount from mocked distribution to 10,000

. . .

19

DeltaHub Smart Contract Audit

. . .

20

DeltaHub Smart Contract Audit

. . .

21

DeltaHub Smart Contract Audit

. . .

22

DeltaHub Smart Contract Audit

. . .

23

DeltaHub Smart Contract Audit

Code Coverage

Conclusion

. . .

24

DeltaHub Smart Contract Audit

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code coverage according to Industry standards should not be less than 95%.

FILE

contracts/

DeltaHubStaking.sol

88.10 64.29 85.71 88.64

contracts/mock

DeltaHubMock.sol 100.00 100.00 100.00 100.00

... 127, 142, 146

100.00 100.00 100.00 100.00

88.10 64.29 85.71 88.64

% STMTS % BRANCH % FUNCS % LINES UNCOVERED LINES

All files 88.64 64.29 86.67 89.13

> Istanbul reports written to ./coverage/ and ./coverage.json

> solidity-coverage cleaning up, shutting down ganache server

Error: 3 test(s) failed under coverage.

 at plugin
(D:\Projects\Audit\Deltahub\deltahub-contracts\node_modules\solidity-coverage\plugins\truffle.plugin.js:
121:27)

 at runMicrotasks (<anonymous>)

 at processTicksAndRejections (node:internal/process/task_queues:93:5)

Truffle v5.1.55 (core: 5.1.55)

Node v15.4.0

error Command failed with exit code 1.

info Visit https://yarnpkg.com/en/docs/cli/run for documentation about this command.

Tests Written by Zokyo

Execution Report

Unit tests

. . .

25

DeltaHub Smart Contract Audit

. . .

26

DeltaHub Smart Contract Audit

Contract: DeltaHubStaking

✓ has a name
✓ has a symbol
✓ has 18 decimals
✓ has total supply

✓ should set token address

✓ should return zero
✓ should return ~current timestamp
✓ should return periodFinish

✓ should return zero if no one stake
✓ should return reward per token
✓ should calculate reword per token correctly
✓ should calculate reword per token correctly with small amount of tokens

✓ when no stakes

. . .

27

DeltaHub Smart Contract Audit

✓ when no reward amount
✓ when stake small amount
✓ when stake big amount
✓ when stake different amount a few times
✓ when stake and unstake

✓ should revert if amount == 0
✓ should increase _totalStaked
✓ should add stake amount to _staked
✓ should transfer stake amount to contract
✓ should mint tokens
✓ should cath event Staked

✓ should revert if amount == 0
✓ should fail if unstake > staked
✓ should decrease _totalStaked
✓ should subtract unstake amount from _staked
✓ should transfer unstake amount to member
✓ should burn tokens
✓ should cath event Unstaked

✓ should unstake all tokens
✓ should got reward

✓ should pass if reward == 0
✓ should zeroed rewards
✓ should transfer reward
✓ should cath event RewardPaid

✓ only Reward Distribution can set reward
✓ should update rewardRate
✓ should update lastUpdateTime
✓ should update periodFinish
✓ should catch event RewardAdded

✓ only owner can set Reward Distribution
✓ should set Reward Distribution

. . .

28

DeltaHub Smart Contract Audit

✓ should return total staked amount

✓ should return total staked for specific account

46 passing (5m)

Integrations tests

. . .

29

DeltaHub Smart Contract Audit

Contract: DeltaHubStaking

✓ set reward a few times
✓ check if it calc correctly reward per day
✓ check if it calc correctly reward per day when set diff reward
✓ 5 users stake same amount on diff period
✓ 5 users stake diff amount on diff period with diff reward
✓ when stake small and big amount
✓ when stake and unstake small and big amount

7 passing (1m)

Code Coverage

. . .

30

DeltaHub Smart Contract Audit

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

FILE

contracts/

DeltaHubStaking.sol

100.00 100.00 100.00 100.00

contracts/mock

DeltaHubMock.sol 100.00 100.00 100.00 100.00

100.00 100.00 100.00 100.00

100.00 100.00 100.00 100.00

% STMTS % BRANCH % FUNCS % LINES UNCOVERED LINES

All files 100.00 100.00 100.00 100.00

We are grateful to have been given the opportunity to work
with the DeltaHub team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the DeltaHub team
put in place a bug bounty program to encourage further
analysis of the smart contract by third parties.

