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EXECUTIVE SUMMARY

Pooled testing, also known as group or batch testing, is a process 
in which portions of individual samples are combined into a single 
pool, which is then tested for a biomarker.  If the pool is negative, 
each of the samples within that pool is considered negative and 
no further testing is required.  If the pool is positive, the individual 
samples that contributed to it are tested to determine which of 
them are positive.  Compared to individually testing each sample, 
pooled testing strategies can increase the efficiency, speed, and 
positive predictive value of diagnostics for case identification. These 
strategies (in some form) have been in practice since 1943 and 
have become more powerful with conceptual and technological 
advances in the interim. However, simple pooling approaches are 

De
si

gn
 b

y 
Ad

ria
lD

es
ig

ns
.c

om

https://AdrialDesigns.com


GILLINGS EPIDEMIOLOGY DASHBOARD FOR NC ﻿ 3

straightforward, can lead to large gains in efficiency, and can be 
implemented in nearly any laboratory setting with minimal preparation.

Pooled testing is generally most useful when the prevalence of 
positive samples among those being tested is low; the usefulness of 
the strategy decreases as the proportion of samples that are positive 
increases. Pooled testing also relies on an underlying assumption 
that after samples are combined and tested for the presence of a 
biomarker of infection, a negative result indicates that all constituent 
samples are negative. However, whether this assumption is reasonable 
depends on the proportion of samples that would have tested 
positive under individual testing but no longer do so under pooled 
testing. Pooled testing decreases the overall sensitivity of the testing 
process, as the concentration of the biomarker in a positive sample 
may no longer be above the assay’s limit of detection after being 
pooled with negative samples. At the same time, pooling typically 
increases the positive predictive value of testing compared to individual 
testing because pooling strategies result in repeat testing of positive 
specimens, and thus an increase in diagnostic specificity. The benefits 
of pooling should be considered alongside the loss of sensitivity from 
dilution, as well as the increased complexity in laboratory procedures 
and potential for contamination that is introduced by pooling.

Presented here are the results of a free, web-based R Shiny app 
developed to determine the optimal pooling size for SARS-CoV-2 
RT-PCR testing based on assay sensitivity and specificity, the underlying 
prevalence of SARS-CoV-2 among samples tested, and making the 
assumption that we will not allow greater than 20% dilution-related 
loss of sensitivity compared to individual testing.  We examined two 
pooling strategies, one simpler and one more complex.  For both 
strategies and at all prevalence levels examined (between 0.1% to 
20%), efficiency and positive predictive value improve under pooling 
relative to individual testing. Further, while total sensitivity is reduced 
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by pooling, every pooling scenario we examined is able to identify 
more true positive cases per assay compared to individual testing.

Pooling can serve as a straightforward way to increase the efficiency 
of testing for SARS-CoV-2, with relatively modest downsides. It should 
be considered as a potential testing strategy moving forward.

I. BACKGROUND ON 
POOLED TESTING

HISTORY AND PARADIGMS

Pooling for Case Identification. Pooled testing (alternatively known 
as group testing or batch testing) of populations for the identification 
of infected individuals was popularized (or perhaps invented) by 
Robert Dorfman, who in 1943 demonstrated the potential to save 
time and resources on syphilis testing for military recruits [1]. Dorfman 
showed that labs could take a fraction of each blood sample, combine 
those samples into pools of a fixed number of individuals, and test 
the pools. If the pools were negative, the individuals in those pools 
could be assumed negative, while if a pool was positive further 
testing could be done to determine which individual(s) were positive. 
Dorfman demonstrated substantial reduction in the total number of 
tests that had to be run using pooled instead of individual testing.

Pooling for Prevalence Estimation. Pooling of samples can also be 
used to estimate the prevalence proportion of infection in a population 
without testing each individual separately. In practice, this resembles 
the first step of Dorfman’s staged testing algorithm, but without the 
follow-up testing of individuals from positive pools. This approach 
is suited to most applications where the identification of individual 
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cases is not a public health or research priority, and is particularly 
useful in cases where the assay being used has a quantitative output 
that can be interpreted as the level of infection in a pool (such as 
antibody concentration or viral titer), or where prevalence is too low 
for individual testing to be practical for prevalence estimation[2].

II. WHY CONSIDER POOLING 
FOR SARS-COV-2?

Pooling has numerous advantages compared to individual testing. 
We explain these advantages and disadvantages briefly.

ADVANTAGES OF POOLING

Efficiency, the number of results obtained per test 
run, can be increased, especially when test positivity is 
low. Note that this may allow us to test more widely in 
asymptomatic populations with a lower prevalence.

Positive predictive value, the probability that a positive test 
result is a true positive, can be increased. This is because a truly 
negative sample will not be declared false-positive until it has 
been through multiple rounds of testing in pooling: if errors are 
independent between testing rounds, the probability of a false-
positive result will become much smaller and thus positive 
predictive value will increase (see below for more detail). 

Throughput, the number of samples that can be processed over 
a given time period, can be increased. If a lab can process only 100 
samples a day, and has one thousand samples to process, individual 
testing would require 10 days – whereas 10:1 pooling (approximately 
optimal at a prevalence of 0.01) can reduce the total time to at most 3 
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days: 1 day to test 100 pools of 10; 1 day to test the individual samples 
within any positive pools (around 10x10 = 100 samples); and 1 day for 
additional lab-related logistics or testing of any additional individual 
samples. 

DISADVANTAGES OF POOLING

Loss of sensitivity is a disadvantage of pooling. Optimal pooling sizes 
for efficiency mean that (typically) at most one sample in a pool is 
positive; thus, in a pool of size N with a single positive sample, the signal 
of that sample (e.g., the viral load measured as a concentration) will be 
diluted by a factor of N. If this brings the viral load in that sample below 
the limit of detection for the assay, this positive sample will be missed.

Increased lab complexity. Pooling requires additional effort from 
laboratory personnel (or the use of a pooling robot); in addition 
to taking more time to process each individual sample (though 
reduced time overall, see Throughput above), this may risk cross-
contamination of samples. Contaminated samples will compromise 
the positive predictive value advantage mentioned above.

III. UNDERSTANDING POOLING: 
CONCEPTUAL OVERVIEW

In this section we will discuss several of the pooled testing 
strategies that have been used historically, some of which 
are currently being used to detect SARS-CoV-2.  

POOLED TESTING STRATEGIES

(Figures in this section from Westreich et al. J Clin Microbiol. 2008)

De
si

gn
 b

y 
Ad

ria
lD

es
ig

ns
.c

om

https://AdrialDesigns.com


GILLINGS EPIDEMIOLOGY DASHBOARD FOR NC ﻿ 7

Two-stage hierarchical (D2). The testing strategy described by 
Dorfman in his 1943 paper is a two-stage hierarchical testing scheme, 
sometimes called “minipooling.” First, parts of the individual test 
samples are combined to form a pool; the pool is tested; and then 
individuals from positive pools are tested.  For example, in a group of 10 
individuals, a pool of 10 would be made. In a group of 100 individuals, 
a single pool of 100 samples, or 10 pools of 10 samples, could be 
made and tested.  This strategy is visually represented in Figure 1.

 
Figure 1: two-stage pooling (D2).

Three-stage hierarchical (D3). Three-stage hierarchical testing is an 
extension of the motivating example and scheme provided by Dorfman, 
with an additional step. After individual samples are combined into 
minipools, these minipools are combined into higher level pools.  The 
largest pools are tested; if positive, then the constituent minipools 
of any positive master pools are tested; and finally the individual 
samples of any positive minipools are tested[3]. For example, 100 
individuals could be tested by creating 10 minipools comprising 10 
individuals each, and a master pool comprising all 100 samples from 
those 10 minipools.  This strategy is visually represented in Figure 2.
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Figure 2: three-stage pooling (D3).

Higher-order hierarchical testing (DN). Hierarchical testing 
can be extended to more than three stages as well.

Array Pooling. Array pooling (typically, square array pooling, 
sometimes abbreviated A2m) requires that samples be arranged 
(literally or conceptually) on a grid, like a chessboard.  Pools are 
created for each row and each column, and individuals whose row 
and column pools both test positive are then tested individually [4]. 
A master pool may also be created of all samples, depending on the 
acceptable level of dilution. A conceptual diagram is shown in Figure 3.

 
Figure 3: square array pooling (A2m).

Other designs. Beyond n-stage and array pooling, other pooled testing 
designs are being considered for the detection of SARS-CoV-2 infection.  
Shental et al. have proposed a combinatorial testing design which 
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removes the need for multiple rounds of testing.  Each patient sample is 
split among multiple pools, and positive individuals are identified based 
on the combination of pools with positive results and the knowledge 
of which samples were present or absent in each pool[5].  Mutesa et 
al. discusses a strategy being tested in Rwanda similar in principle to 
array pooling, but increasing the number of dimensions[6].  These offer 
a potential advantage over the hierarchical strategies, but are best 
suited to sample populations with low prevalence (~1% or even lower). 

We note that while all pooling strategies increase complexity 
in the lab compared to individual testing, array pooling as 
well as strategies listed under “Other designs” may increase 
complexity beyond what is practicable in lab settings without 
use of specialized automated pooling systems (“pooling robots”, 
e.g.  epMotion 5070 robot (Eppendorf, Hamburg, Germany)).

IV. UNDERSTANDING POOLING: 
TERMS AND METHODS

DEFINITION/EXPLANATION OF TERMS 

Optimal pooling strategy. The optimal pooling strategy, for 
a given set of parameters, is here chosen as the one that has 
the best value for efficiency (see below). We acknowledge that 
some investigators might wish to optimize the pooling process 
for something other than efficiency: for example, it might be 
preferable to accept slightly lower efficiency if it meant obtaining 
a higher positive predictive value. Here we do not address 
this possibility, but it is a possible subject for future work.
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Efficiency. While we briefly defined efficiency above, here we 
elaborate. The primary benefit of pooled testing is the substantial 
increase in efficiency in use of test kits that can be gained compared 
to individual testing, especially if the population undergoing testing 
has a low prevalence of the disease of interest. There may be 
efficiency gains in turnaround time, as well, but we address this 
issue below (Time to results, and in Section VIII, first paragraph).

The efficiency of a testing strategy is defined as the average number 
of test kits used per result obtained. Individual testing always has an 
efficiency of 1 – the average number of tests used is 1 per person (or 
1 per result).  For example, individual testing of a population of 1,000 
persons will use 1,000 tests (efficiency = 1). However, if pooling strategy 
A uses 500 tests to obtain results for the 1,000 persons and strategy 
B only 100 tests, efficiency will be 0.5 and 0.1, respectively. In this 
measurement of efficiency (tests per person), lower values are better.

Alternatively, we can describe efficiency in terms of the number 
of people who can be expected to be screened per test used: 
this is simply the reciprocal of the efficiency number above. If 
we can screen 1000 people with 500 tests, then on average we 
are screening 2 people for every test. In this measurement of 
efficiency (people screened per test), higher values are better.

Efficiency changes primarily with prevalence of the condition for which 
we are testing, but can also change with assay sensitivity and specificity, 
as well as anticipated dilution effects from the pooling itself. The R 
Shiny app (visit gillingscovid19.unc.edu and search “pooling” to find the 
research app) and an older web calculator (bios.unc.edu/~mhudgens/
SARS-CoV-2.pooling.home.html) allow calculation of efficiency for 
arbitrary input parameters, and results from the two tools are identical.

Case identification efficiency. In addition to gains in efficiency in use 
of test kits, pooled testing can increase the expected number of true 
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positive cases detected per test (or per 1000 tests) used. This is true 
despite pooling reducing sensitivity [7].  In a simulation study, Cleary et 
al. examined the outcome “total recall” defined as the total number of 
positive individuals identified by a testing strategy [8]. Depending on the 
pooling strategy and disease prevalence in the simulated population, 
pooling in the context of limited test kit availability could identify as 
many as 20 times the number of true positive cases compared to 
individual testing [8], despite pooling-related losses in sensitivity.

Expected number of true positive cases detected per 1,000 tests is a 
function of the true prevalence in the population, and the efficiency and 
sensitivity of the testing algorithm (see below for more on sensitivity). 
The expected number of true positive cases detected per test used can 
be estimated as (1/efficiency) × (true prevalence of disease) × (sensitivity 
of pooled testing), where efficiency is measured as tests/person. In 
the individual testing scenario, efficiency is equal to 1, and diagnostic 
sensitivity (defined below) is the same as the sensitivity of the assay 
itself. We discuss sensitivity of pooled testing immediately below.

Diagnostic test performance. Here we presume little 
familiarity with clinical epidemiology methods, and so first 
explain sensitivity and specificity so that we can then explain 
how pooled testing leads to increases in positive predictive 
value and decreases in sensitivity due to dilution.

Sensitivity and specificity. Broadly, sensitivity is the ability of 
a diagnostic test or other tool to correctly identify true positive 
samples or individuals, and is strongly analogous to “power” in 
randomized trials settings. One minus the sensitivity is the false 
negative probability, sometimes called Type II error. Specificity is 
the ability of a diagnostic test or other tool to correctly identify true 
negative samples or individuals; the complement of specificity is 
the probability of a false positive, sometimes called a Type I error.
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An important distinction, described by Saah and Hoover in 1997, 
exists between analytical and diagnostic sensitivity, and likewise 
between analytical and diagnostic specificity [9]. The authors 
defined analytical sensitivity as an “assay’s ability to detect a low 
concentration of a given substance in a biological sample,” which may 
be referred to as the lower limit of detection (LLD). The analytical 
sensitivity, or LLD, is typically determined by identifying the lowest 
concentration at which some proportion (for example, 95%) of known 
positive specimen are identified as positive by the assay [10,11].

In contrast, diagnostic sensitivity is a proportion defined as the 
percentage of persons with disease in a population undergoing 
testing that are ultimately classified correctly as having that disease. 
Diagnostic sensitivity is affected by the assay’s analytical sensitivity, 
in addition to other factors. For example, if a person who truly has 
COVID-19 receives inadequate nasal swabbing that does not capture 
any SARS-CoV-2 RNA, this individual’s nasal swab sample will likely 
test negative and the individual incorrectly classified as not having 
COVID-19 based on this result. This is not a failing of the assay, but 
rather of the cascade of events prior to the assay. Similar distinctions 
can be made between analytical, or assay, specificity and diagnostic 
specificity. Diagnostic specificity is affected by the assay’s analytic/
assay specificity as well as other factors including the assay’s 
analytical sensitivity in that a highly sensitive test may result in an 
increased probability of false-positives due to contamination [9].

For the remainder of the white paper, we will primarily focus on the 
following four terms to describe sensitivity and specificity: assay 
sensitivity (probability a sample correctly tests positive), diagnostic 
sensitivity (probability an individual is correctly identified as positive 
at a single testing event), assay specificity (probability a sample 
correctly tests negative), and diagnostic specificity (probability an 
individual is correctly identified as negative at a single testing event). 
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Loss of sensitivity due to dilution. When pooling specimen for group 
testing, it is essential to consider the dilution effects of pooling, i.e., 
the loss in diagnostic sensitivity due to diluting a positive sample with 
negative samples. We define dilution as the proportion of samples 
originally expected to test positive under individual testing (viral 
RNA > LLD) that are now expected to be in master pools in which the 
concentration of viral RNA is below the LLD. Pilcher et al. describe a 
scenario where a testing protocol that does not utilize pooling has 
a diagnostic sensitivity of 70% [7]. If pooling results in 10% dilution, 
the new diagnostic sensitivity will be 70% × 90% = 63% (holding all 
variables other than pooling constant). In the R Shiny app and results, 
the diagnostic sensitivity under individual testing is assumed equal 
to assay sensitivity. Thus, in this paper, diagnostic sensitivity in a 
pooled testing scenario is equal to (assay sensitivity) × (1-dilution).

Based on the viral dynamic model that the R Shiny app utilizes and 
the LLD of the SARS-CoV-2 assay, there is a 14-day window in which 
SARS-CoV-2 can be detected: that is, there are 14 days of infection in 
which SARS-CoV-2 concentration in nasopharyngeal specimen is at 
or above the LLD. After dilution, and assuming that there is at most 
one positive specimen per pool, the detection window will decrease 
as the master pool size increases.1 The detection window and dilution 
effects described here and in the next section are specific to the 
assumed viral dynamic model and attributes of the SARS-CoV-2 assay, 
and will change as the viral dynamic assumptions or assay change. 

The viral dynamics model itself is described in lab considerations.

Maximum allowable dilution (MAD). The maximum allowable 
dilution (MAD) is the proportion of the diagnostic sensitivity 
that one is willing to lose in order to pool together samples, 

1.	 If there is more than one positive in a master pool, a specimen with a low concentration that would have fallen under the LLD 
after dilution might be “rescued” by the presence of another positive specimen in the same master pool. However, this situation is 
expected to be rare; the probability of multiple positives per pool is very small if pool size has been selected to optimize efficiency.
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thus diluting positive samples with negative ones. The MAD 
value is determined a priori, and can range from 0 to 1. 

Maximum allowable pool size (MAPS). For a given viral dynamics 
model, the MAD value implies a particular maximum allowable 
pool size (MAPS) – the largest value for the master pool size that 
will result in a diagnostic sensitivity loss no larger than the MAD. 

The SARS-CoV-2 viral dynamics model for the R Shiny app assumes 
that there is a 14-day detection window. The equations that 
relate MAD and MAPS further assume that infected individuals 
present for testing uniformly during the detection window and 
that there is at most one positive specimen per master pool. The 
equations that relate MAD and MAPS are as follows [7,12]:

Assuming the model of R= +1.0 log10 viral load per day (see Viral 
dynamics model) and a 14-day detection window, the equations are:

In the following results, we have assumed that we set MAD a priori 
at 20% - we will not allow pooling to reduce diagnostic sensitivity 
more than 20% compared to individual testing. Another way to 
think of MAD = 0.20 is as a loss of 20% of the 14-day detection 
window, or 2.8 days (1.4 days on each side of the window). The 
MAPS for a maximum allowable dilution of 20% is calculated as: 
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Thus, in the following, we did not consider any master 
pools above size 25. Assuming the viral dynamics model 
is correct, this gives us a maximum dilution of 20%.

If people do not present uniformly in the detection window, the 
MAPS implied by a particular MAD could be different. Consider, for 
example, a community with routine, voluntary screening available for 
all individuals. Among infected persons with non-severe disease, those 
experiencing mild, non-specific symptoms (versus no symptoms) may 
be more likely to present for screening. Because viral load for SARS-
CoV-2 is highest around the onset of symptoms (even if they are mild), 
infected persons in this testing population may disproportionately 
present around the peak viral load (days 5 through 10 of the 14-day 
window). In this scenario, one could actually have a higher MAPS 
for a given MAD then is expected under the assumption of uniform 
presentation. On the other hand, a screening program used exclusively 
among asymptomatic individuals in the general population, with 
no known exposures, would likely conform to the assumption that 
infected individuals present uniformly in the detection window.

Positive predictive value (PPV). Positive predictive value, simply, 
is the probability that given a positive test result, the sample or 
individual in question is truly positive. Pooling increases the PPV 
compared to individual testing because pooling strategies result in 
repeat testing of positive specimens, and thus an increase in the 
effective per-sample specificity, and thus the diagnostic specificity.

Specifically, in a minipooling (D2) approach with a truly negative 
master pool, a sample will only test positive if both (i) the master 
pool and (ii) the individual sample test (false) positive. In the absence 
of contamination and if the errors are independent, the probability 
of such an event for any particular sample is a function of assay 
specificity, (1-Sp)2. For a high specificity test (e.g., PCR often has 
specificity of 0.99 or greater) this means the probability that any 
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single sample will test false positive is (1-0.99)(1-0.99) = 0.0001, for 
an effective per-sample specificity of 0.9999.2 Similar math shows 
that the effective per-sample specificity in D3 pooling could reach 
0.999999. Since PPV is driven in large part by specificity (higher 
specificity leads to fewer false positives and higher PPV), this 
substantial increase in effective specificity of the assay under pooling 
can lead to large gains in PPV compared to individual testing. 

However, if there is cross-contamination in the pooling process, 
the errors from round to round will not be independent and these 
considerations will not apply, nor will such calculations reflect 
reality. The risk of cross-contamination of samples during handling 
should be low if a consistent workflow and organizational scheme 
for pooling is implemented with good sterile technique, but the step 
of pooling samples introduces additional opportunities for cross-
contamination to occur. Das et al. 2020 (doi: 10.1016/j.jcv.2020.104619) 
provide a suggested workflow for minimization of such risks.

Time to results. Time to results is operationalized as the average 
number of rounds of testing required to obtain the final results, 
assuming that individual testing requires 1 round. For example, if 
at least 1 master pool tests positive in the D2 strategy, 2 rounds of 
testing will be required to obtain final results. If at least 1 master 
pool and sub-pool test positive in the D3 strategy, 3 rounds of 
testing will be required. Given at least one master pool tests 
positive, pooling will always increase the minimum time to results 
(when operationalized in this way) compared to individual testing, 
as individual testing can return results in a single round. 

However, in practice, the amount of time required to obtain 
results for the population of interest may be substantially 

2.	 The situation is of course more complicated, in that in an N:1 minipool, if the master pool tests positive, there are N opportunities for a 
second false positive. Likewise, if the pool contains a true positive sample which is correctly identified, then there are N-1 opportunities 
for a false positive at the original assay specificity. Additional biostatistical details for this and related considerations can be found in [4].
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less with pooling versus individual testing due to the reduced 
number of assays run in the context of pooling [7,13].

BIOSTATISTICS OF POOLING

As As noted elsewhere, the biostatistics of pooling are 
complex. For details, we suggest starting with:

•	 Bilder C, Iwen P, Abdalhamid B, Tebbs J, and McMahan C. (2020). 
Tests in short supply? Try group testing. Significance 17(3), 15-16

•	 Bilder C. (2019). Group testing for estimation. Wiley 
StatsRef: Statistics Reference Online. https://
doi.org/10.1002/9781118445112.stat08231

•	 Bilder C. (2019). Group testing for identification. 
Wiley StatsRef: Statistics Reference Online. https://
doi.org/10.1002/9781118445112.stat08227

and then additional, more technical literature including: 

•	 Kim HY, Hudgens MG, Dreyfuss JM, Westreich DJ, Pilcher CD. 
Comparison of group testing algorithms for case identification 
in the presence of test error. Biometrics. 2007 Dec;63(4):1152-
63. doi: 10.1111/j.1541-0420.2007.00817.x. PMID: 17501946

•	 Litvak E, Tu XM and Pagano M, 1994. Screening for the 
presence of a disease by pooling sera samples. Journal of 
the American Statistical Association, 89(426), pp.424-434.

•	 Johnson NL, Kotz S, and Wu X. (1991). Inspection Errors for 
Attributes in Quality Control. New York: Chapman and Hall Ltd.
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HOW THE CALCULATOR WORKS/
OPTIMIZES POOL SIZE

The R Shiny app can be found by visiting gillingscovid19.
unc.edu and searching pooling.

Additionally, the latest version of the SARS-CoV-2 web calculator, which 
was first made available in August 2020 but has been updated, can be 
found here:  
http://www.bios.unc.edu/~mhudgens/SARS-CoV-2.pooling.home.html

The results from the R Shiny app and web calculator are identical. 
When using the SARS-CoV-2 R Shiny app, there are 5 inputs that 
the user must specify: assay sensitivity (defaults to 0.95); maximum 
allowable dilution (MAD) (defaults to 0.2); assay specificity (defaults 
to 0.99); prevalence (or range of prevalence values); pooling strategy 
of interest (D2, D3, and/or A2m). The maximum allowable pool size 
(MAPS) is automatically calculated for the user using the equation 
described in the previous section (see Definitions/explanation of 
terms) and the input MAD value. When using the web calculator, 
the user must specify the MAPS (though clicking on the “compute” 
button will populate this value if MAD has been specified), and 
results for all three pooling strategies are automatically presented. 

The R Shiny app (using R code) and the web calculator (using 
HTML code) calculate the optimal pool size for three pooling 
designs: D2, D3, and the A2m (though we do not present results for 
A2m pooling below, as it is likely too complicated, with relatively 
little advantage over D3 pooling, for labs to pursue in general). 
The calculator reports the optimal pool size for each design, 
and the efficiency and PPV associated with that pool size.

For each pooling design, the optimal pool size is the pool size with the 
lowest value for efficiency (i.e., most efficient). For the D2 design, given 
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the 5 inputs specified, the program calculates the efficiency for every 
potential master pool size in the range starting at the value of MAPS 
and ending at 2 (because 1 is simply individual testing). For example, 
if one decides that the maximum allowable dilution is 0.2, then one 
would specify a MAPS of 25 (or 25 would be auto-calculated using the 
R Shiny app), and the program would calculate efficiency for every 
integer between 2 and 25. The pool size between 2 and 25 with the 
best value for efficiency would be selected as the optimal pool size.

For the D3 and A2m designs, the program calculates efficiency for every 
integer between 2 and the MAPS value that is also a square number. 
For example, given MAPS=25, the program would calculate efficiency 
for four potential master pool sizes (4, 9, 16, and 25), and the pool size 
with the lowest value for efficiency would be reported as the optimal.

After the optimal pool size is selected, the PPV is calculated 
based on a function of optimal pool size, the updated 
diagnostic sensitivity, assay specificity, and prevalence.

UPDATES TO THE R SHINY APP/WEB 
CALCULATOR SINCE AUGUST 2020

A version of the web calculator was made available in August 2020. 
Since August 2020, there have been two major changes to the code 
used to optimize pool size; these changes are reflected in the R 
Shiny app and latest version of the published web calculator.  First, 
diagnostic sensitivity is now updated as the calculator optimizes pool 
size, and second the final, diagnostic sensitivity is updated to reflect 
the true dilution expected to be realized in the final, optimal pool.  

Previously, the efficiency and PPV were calculated using the diagnostic 
sensitivity associated with the MAPS (i.e., (1-MAD)*assay sensitivity), 
regardless of the pool size for which efficiency and PPV were being 
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calculated. As of December 2020, all code calculates efficiency for 
a given pool size using the diagnostic sensitivity updated for each 
current pool size, and calculates PPV for the optimal pool size using 
the diagnostic sensitivity expected under that optimal pool size.

V. LAB CONSIDERATIONS 
FOR POOLING COVID

SARS-CoV-2 RT-PCR Tests. Real-time reverse transcriptase polymerase 
chain reaction (RT-PCR) tests are a type of nucleic acid amplification 
test (NAAT) used to detect the presence of specific sequences of 
RNA. After extracting RNA from a sample, RT-PCR transcribes RNA 
into DNA, the DNA is amplified, and as the DNA accumulates a 
fluorescent signal emerges indicating its presence. The number of 
cycles of amplification needed to produce the fluorescent signal is 
termed the cycle threshold (Ct) – a measure that is inversely correlated 
with the concentration of RNA in the sample. RT-PCR is highly 
sensitive (high analytical sensitivity) and frequently used for virus 
detection, though it is costly and resource-intensive to implement. 

The Centers for Disease Control and Prevention (CDC) have 
developed two real-time RT-PCR tests for the detection of SARS-
CoV-2 RNA: the 2019-Novel Coronavirus (2019-nCoV) Real-Time 
RT-PCR Diagnostic Panel and the CDC Influenza SARS-CoV-2 (Flu SC2) 
Multiplex Assay. These tests are approved by the U.S. Food and Drug 
Administration (FDA) under an emergency use authorization (EUA). 
Both tests are designed to identify SARS-CoV-2 RNA from upper 
(e.g., nasopharyngeal) or lower (e.g., sputum) respiratory samples.  
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EMERGENCY USE AUTHORIZATION 
FOR SARS-COV-2 POOLED TESTING

The “Quest SARS-CoV-2 rRT-PCR” was authorized for use by the 
FDA under an EUA, and is designed to detect SARS-CoV-2 RNA 
in upper or lower respiratory samples as well. This EUA permits 
individual testing with the assay, as well as pooled specimen 
testing with master pools of size 4 or less. This assay has an 
LLD of 136 copies/mL – at this concentration, the probability of 
correctly classifying a specimen as positive is 95%. A Ct value 
of <40 is considered a positive result. The specificity (i.e., assay 
specificity) reported in the package insert for this assay is 100%. 

For directions related to the use of SARS-CoV-2 RT-PCR tests, 
information about required supplies, and further details of the 
assay characteristics, please refer to the citations referenced.3

LABORATORY CONSIDERATIONS

The implementation of pooling strategies tends to increase the 
complexity of laboratory procedures for processing and analyzing 
samples relative to individual testing of individual samples.  This added 
complexity can be addressed through the use of pooling robots, 
which have the potential to save time and prevent errors, but require 
additional resources for their purchase, setup, and programming. The 
complexity added to a testing process by implementing pooled testing 
depends on the strategy being used, with 2- or 3-stage hierarchical 
pooling likely presenting a lesser organizational and analytic challenge 
than array pooling, and combinatorial pooling requiring either a 
pooling robot or a great deal of organizational effort and risk of error.

3.	 CDC tests: https://www.fda.gov/media/134922/download and https://www.fda.gov/
media/139743/download; Quest https://www.fda.gov/media/136231/download
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VIRAL DYNAMICS MODEL

The SARS-CoV-2 web calculator and R Shiny app assume a model of 
the typical viral load trajectory for an individual who is infected with 
SARS-CoV-2 and symptomatic, but not-critically ill. The calculator 
assumes a 14-day detection window, in which viral RNA increases 
steadily at a rate of +1.0 log10 viral load per day for 4 days, plateaus 
at a peak of 4.2 log10 viral load for 6 days, and steadily decreases 
at a rate of -1.0 log10 viral load per day for 4 days – Figure 4 (left). 
A sample that is collected at the beginning or end of the detection 
window (compared to the peak) is more likely to be undetected by 
a pooled testing algorithm, because it is closer to the LLD and thus 
more likely to be in a master pool in which the viral RNA concentration 
is below the LLD (unless it is “rescued” by the presence of another 
positive sample in the same master pool) – Figure 4 (below) [8]. 
Finally, it is assumed that cases present for testing uniformly during 
the detection window. Thus, any question related to the proportion 
of positive samples “lost” due to the decreased diagnostic sensitivity 
of pooling can be framed as the proportion of days during the 
detection window that are no longer detectable due to dilution. 

 
Figure 4: Model for nasopharyngeal (NP) RNA in acute severe acute respiratory 
syndrome–coronavirus 2 (SARS CoV-2) infection. From (Pilcher, Westreich, Hudgens. 
Journal of Infectious Diseases. 2020).
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Pilcher et al. confirmed that the assumed viral load dynamic model 
produces a distribution of viral loads that is in accordance with viral load 
results from recent clinical studies of non-critical COVID-19 cases [7]. 
The assumed viral load dynamics are based on literature review [14–20] 
and are subject to change as more information becomes available. 

For example, there is literature that supports the possibility of a more 
asymmetric viral load trajectory: a rapid increase in viral load after 
infection, a peak in viral load around the time of symptom onset, 
followed by a slower decline in viral load with low, but detectable, 
viral shedding past day 14 of infection [21–25].  Cevik et al. conducted 
a meta-analysis of 79 SARS-CoV-2-related studies and found that the 
longest period of viral shedding reported was 83 days in the upper 
respiratory tract for one patient [21]. While it is possible that some 
infected individuals have an extended period of viral shedding during 
convalescence, it may not correspond with infectiousness (viral load 
may be very low, and cultivable virus may rarely persist beyond 10 
days post symptom onset for mild/moderate cases); thus, these 
may not be cases that are highly important to detect [21,22,24,26,27]. 
The assumption that persons with asymptomatic infection have 
similar viral load trajectories as those with mild/moderate disease 
seems to be supported at this time, though the viral load kinetics 
may be different for persons with severe disease [19,21,26,28]. 

If any updates to the viral load dynamic model occur in the 
future, a log of these changes will be recorded and available 
on the calculator website. We note that if it is in fact the case 
that viral load declines more slowly, and extends beyond day 14 
of infection, then (broadly) we anticipate that the calculations 
here related to sensitivity loss are conservative, and that true 
sensitivity loss would be smaller than we anticipate in our model 
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(or, alternatively, that larger pool sizes may be acceptable while 
still limiting loss of diagnostic sensitivity due to dilution). 

VI. PREDICTED RESULTS OF 
POOLING FOR SARS-COV-2

Table 1 presents results for the SARS-CoV-2 pooling as reported in 
Pilcher, Westreich, Hudgens[7]4 with a range of prevalence values 
from 0.001 to 0.10 under the default settings of assay sensitivity=0.95, 
MAD=0.2 (and thus MAPS=25), and assay specificity=0.99. For 
prevalence values ranging from 0.001 to 0.10, the D2 efficiency ranges 
from 0.0685 to 0.5552 and the D3 efficiency ranges from 0.0497 to 
0.4966. Within each pooled testing strategy, pooling is most efficient 
at the lowest prevalence. As prevalence increases, pooled testing for a 
given strategy becomes less efficient, but within the range examined 
here pooled testing remains more efficient than individual testing. For 
example, even at prevalence 10%, the D3 strategy can obtain results for 
2,014 individuals per 1,000 tests (versus 1,000 results obtained under 
individual testing).5 Furthermore, pooling still remains more efficient 
than individual testing at prevalence values of 11% to 20% (see Figure 
6 – graphical output from the R Shiny app for the D2 and D3 strategies). 

Within the D2 pooling strategy, optimal pool size decreases, or remains 
constant, as prevalence increases (Table 1, Figure 5a). Optimal pool 
size decreases from 25 at prevalence=0.1% to 4 at prevalence=10%, 
and remains 4 at prevalence=15% or 20%. As prevalence increases, 
large master pools have an increased probability of containing a 
positive result. In order to retain the benefit of pooling at higher 
prevalence values, a smaller master pool size is typically favored to 

4.	 Note that the web calculator may produce slightly different results, because the publication relied on additional code to 
confirm and sometimes correct findings from the web calculator. However the results from the web calculator were never 
wrong by much and can be relied upon broadly for planning purposes. Inconsistencies will be resolved in future work.

5.	 Though it may not be worth additional laboratory effort to pool in such a high prevalence setting. In addition, we obtain this number 
by taking the reciprocal of the efficiency (to more decimal places than is shown in Table 1) and then multiplying by 1000.
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ensure that some master pools test negative. However, at higher 
prevalence values, when master pools are extremely unlikely to be 
negative, larger pool sizes may once again become more favorable. In 
the D3 strategy, the optimal master pool size drops from 25 to 16 at 
prevalence=5%, and then returns to 25 at prevalence=10%. Similarly, 
optimal pool size returns to 25 for the D2 strategy at prevalence=30%.

At the prevalence levels examined in Table 1, the more complex 
strategy (D3 versus D2, see also Figure 5b) is more efficient at a 
given prevalence. Per 1,000 tests at prevalence=1%, D3 pooling can 
obtain results for ~8,800 individuals versus ~5,500 individuals for 
D2 pooling. However, as prevalence increases toward 100% and 
fewer of the pools test negative, the more complex D3 strategy has 
similar efficiency to D2 pooling, and ultimately individual testing.

Both pooling strategies, at all prevalence levels explored, result in large 
gains in positive predictive value (which, again, assumes independence 
of errors between rounds of testing, including no contamination). At 
each prevalence level, PPV is higher in the pooled scenario versus 
individual testing, with the absolute difference between the pooled 
PPV and individual PPV largest at lowest prevalence. This is because 
individual testing is particularly poor at low prevalence levels: at 
prevalence=0.1%, only 9% of individuals who test positive are expected 
to be truly positive. In the D2 strategy at prevalence=0.1%, pooled 
PPV is 73% and individual PPV is 9%. At prevalence=10%, pooled 
PPV for D2 is 98% and individual PPV is 91%. At prevalence=20%, 
pooled PPV is 98% for D2, compared to 96% for individual testing. 
At each prevalence level <10%, PPV is higher for D3 versus D2; at 
prevalence levels of 10%-20%, the PPV for D3 and D2 are comparable. 

As expected, the average time to results for both pooling strategies 
at every prevalence level examined is greater than the average time 
to results for individual testing, which is always equal to one round 
of testing given our operationalization of this outcome. The average 
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time to results under pooling increases as prevalence increases. For 
example, in the D3 strategy, average time to results is 1.03 rounds at 
prevalence=0.1% and increases to 2.02 rounds at prevalence=10%. At 
each prevalence level, the D3 algorithm has a higher average time to 
results than the D2 algorithm, which was expected given D3 testing 
has one additional possible round of testing compared to D2 testing. 

On time to results, however, it is important to note that if a lab 
had more-limited capacity for throughput, pooling could provide 
substantial advantages in time-to-results. E.g., if a particular lab 
had the capacity to run a total of one round of 100 individual tests 
per day, and 1000 specimens arrive at the lab, then turn around 
time for those 1000 specimens would be a mean of 5.5 days to 
turnaround for each specimen, and it would take 10 days to time 
to results for all individuals. On the other hand, at a prevalence 
of 1%, 10:1 minipools might take one day to construct 100 pools 
of 10 specimens each; one day to process the 100 pools; and one 
day to repeat test specimens in any positive pools (of which we 
expect approximately 10, comprising 100 more individual samples). 
This would require 3 days to results for all individuals, or a mean 
less than 3 days. This might prove a substantial advantage if, for 
example, positive results are being used for contact tracing. 

Even though diagnostic sensitivity is reduced by pooling, both 
pooling strategies at every prevalence level examined identify 
more true positives per 1,000 tests compared to individual testing. 
At prevalence=10%, individual testing is expected to identify 95 
true positives, whereas D2 and D3 pooling is expected to identify 
156 and 153 true positive cases, respectively. Unsurprisingly, 
number of true positives identified increases as prevalence of 
disease increases. At each prevalence level <10% examined, the 
D3 strategy identified the highest number of true positives per 
1,000 tests, whereas at prevalence levels 10-20%, D2 identified 
slightly more true positives than D3 per 1,000 tests. 
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VII. PRACTICAL GUIDANCE ON 
POOLING IMPLEMENTATION 
 
Sorting specimens by clinical presentation (symptomatic vs. 
asymptomatic) prior to pooling. Analysis is currently underway to 
assess the extent to which screening individuals with a low probability 
of testing positive (asymptomatic, no known exposures) to pool 
separately from symptomatic individuals could improve pooling 
efficiency. By lowering the effective prevalence in the asymptomatic 
pools, larger and more efficient pool sizes may be possible.  However, 
the extent to which this additional screening is worthwhile necessarily 
depends on the effort involved in screening and whether the 
screening strategy can effectively differentiate lower risk individuals.

Considerations for when and how to update the input for 
prevalence in the R Shiny app. It may be logistically impractical 
to frequently update the pooling strategy implemented in a lab 
based on changing prevalence in the area, and changing the pooling 
algorithm would likely be reserved for substantial shifts in the reported 
prevalence. If adjustments are to be made to the pooling strategy 
in light of a change in prevalence, they should be made based on 
the percent test positivity in the region, rather than population 
prevalence. Averaged estimates of test positivity over more than 
one day (versus test positivity on a single day) are also likely to be 
more stable indicators on which to base optimal pooling strategies.

Antigen testing and the importance of screening frequency for 
case detection. Throughout this paper, we have focused on diagnostic 
sensitivity, defined as the proportion of cases correctly identified as 
positive at a single time point, which is a product of assay sensitivity 
and dilution due to pooling in our calculations. However, the overall 
goal of screening for case detection is to identify positive individuals 
at some point during their infection, ideally near the beginning of 
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infection to prevent transmission to others. In a recent article, Mina 
et al. emphasize the importance of considering the sensitivity of an 
overall testing approach, and theoretically compare the probability 
that an infected individual will be identified as positive at some point 
during their infection using occasional PCR testing versus more 
routine antigen testing – see Mina et al., Figure (not numbered) [29]. 

Compared to antigen testing, PCR testing can detect a smaller amount 
of virus in specimen and has higher diagnostic sensitivity accordingly, 
but is more resource-intensive and costly to implement, and may 
have longer turn-around time to results [29]. Thus, antigen testing, 
which may miss more cases than PCR during a single testing event, 
may actually identify more positive cases over a period of time due to 
the higher frequency with which the antigen test can be administered 
[29]. Importantly, this elevated test frequency along with the quicker 
turn-around time of results may facilitate identification of individuals 
before or during their peak viral load when methods to prevent 
transmission are most needed [29]. As well, antigen testing may be 
less likely to pick up individuals with lower viral loads, who are less 
likely to transmit the virus to others. Pooled PCR testing may be a 
strategy analogous to antigen testing: compared to individual PCR 
testing, pooled PCR testing saves money and resources at the expense 
of lower diagnostic sensitivity. Pooled PCR testing may likewise be 
a mechanism to increase the frequency of screening in populations 
and the overall detection of positive individuals at some point during 
their infection. However, whether pooled PCR testing has the potential 
to decrease the turn-around time of results (given the logistical 
challenge it may impose on a lab) needs to be carefully considered.

Application of pooling to antibody testing. The methods and 
results presented in this paper focus on pooled PCR testing for 
the detection of virus. However, antibody testing will play an 
essential role in further understanding the COVID-19 pandemic (e.g., 
understanding total number of COVID-19 cases and the proportion 
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who experience asymptomatic versus symptomatic infection), 
and demand for widespread antibody testing may make pooled 
antibody testing desirable. However, the variety of serological 
assays for SARS-CoV-2 antibodies, as well as a lack of current 
understanding of SARS-CoV-2 antibody kinetics and how they 
vary among individuals and over time, make the direct application 
of the methods presented here and accompanying R Shiny app 
questionable at best.  The extent to which underlying assumptions 
about the impact of pooling on diagnostic sensitivity and specificity 
are reasonable would depend on the characteristics of the assay 
being used; the variety of assay approaches, antibody targets, and 
cutoff values used would make a generalized commentary on 
pooling of samples for this purpose inadequate or misleading.

Test performance attributes of FDA approved serology assays can 
be found here: https://www.fda.gov/medical-devices/coronavirus-
disease-2019-covid-19-emergency-use-authorizations-medical-devices/
eua-authorized-serology-test-performance 

VIII. SUMMARY AND TAKEAWAYS
Here we have shown the theoretical tradeoffs in the total number 
of tests required for case detection, the number of rounds of testing 
required to get results, and the positive predictive value of the results 
that can emerge from pooling. However, whether pooling is “worth it,” 
overall – and potential for delay and error involved in implementing 
the optimal pooling algorithm – depend on the context. This R Shiny 
app and document provide guidance on selecting optimal pooling 
strategies, however the ultimate decision of whether or not to pool may 
be complex and driven by more than the 5 quantitative inputs required 
for the Shiny app to run. Furthermore, depending on context, users may 
want to optimize pooling for an outcome other than efficiency, such 
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as number of results returned within 3 days, as we discussed above.

When using pooling methods, the optimal testing algorithm 
and pool size depend not only on the underlying sensitivity and 
specificity of the assay used, but the proportion of samples that 
are truly positive, which means that the volatility of test-positivity 
rates in an ongoing epidemic may require recalibration to maintain 
the efficiency and positive predictive value of pooled testing 
over time. This may be achieved through periodic prevalence 
estimation through broader pooled testing, reported test positivity 
rates in an area, or cut points that dictate the pool size of testing 
moving forward based on the findings of the previous period.

There are several limitations to consider when using the R Shiny app to 
implement the pooling strategies described within this paper. First, all of 
the input probabilities presented (e.g., assay sensitivity = 95%) are not 
deterministic, i.e., there is variability in each probability and the input 
chosen is only an estimate. Thus, while we present a single estimate 
for efficiency for a given set of parameters, there is in fact variability 
around the estimate. Second, the calculations encoded by the R 
Shiny app/web calculator generally make the assumption that there 
is at most one positive specimen per pool. For instance, the impact 
of pool size on dilution assumes that there is at most one positive 
per pool. If however, there is more than a single positive specimen in 
a positive pool, the dilution due to pooling will be less extreme than 
the results presented. Third, our definition of diagnostic sensitivity 
is only affected by assay sensitivity and dilution due to pooling. In 
practice, a positive individual could ultimately be misclassified as 
negative/indeterminate during a single testing event for other reasons, 
such as inadequate nasopharyngeal swabbing or a data entry error. 
However, individual testing is also susceptible to these errors.

In testing applications where individuals with higher probability of 
testing positive are being screened (>1% prevalence), we feel that 
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simpler 2- and 3-stage hierarchical pooling are generally preferable 
to more complex options like array pooling (such as A2m pools) 
or combinatorial pooling strategies. In the context of SARS-CoV-2, 
the more complex pooling strategies are generally being proposed 
and implemented to detect asymptomatic individuals with a 
low prior probability of infection. In general, higher background 
positivity rates in the samples being tested lend themselves 
to simpler pooling strategies and smaller pooling sizes.

The included guidance shows a clear pathway forward if state 
laboratories wish to implement simple pooling algorithms for 
more efficient detection of samples, which may bear fruit even 
at current (December 2020) high rates of positivity. Laboratories 
wishing to implement such pooling can feel free to get in contact 
with the pooling lead at Gillings Center for Coronavirus Testing, 
Screening, and Surveillance, Dr. Daniel Westreich (djw@unc.edu).

De
si

gn
 b

y 
Ad

ria
lD

es
ig

ns
.c

om

https://AdrialDesigns.com


GILLINGS EPIDEMIOLOGY DASHBOARD FOR NC ﻿ 32

Table 1. Testing characteristics for two pooling strategies (D2, D3)*

*Adapted from (Pilcher et al., 2020).
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Figure 5a. D2 pooling strategy – efficiency and optimal pool 
size over a range of prevalence values (1% to 10%)*

*Calculator settings: assay sensitivity = 0.95; maximum allowable dilution = 0.20; 
maximum allowable pool size =25; assay specificity = 0.99 
^Red value indicates the optimal master pool size

Figure 5b. D3 pooling strategy – efficiency and optimal pool 
size over a range of prevalence values (1% to 10%)*

 
*Calculator settings: assay sensitivity = 0.95; maximum allowable dilution = 0.20; 
maximum allowable pool size =25; assay specificity = 0.99  
^Red value indicates the optimal master pool size
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Figure 6. Graphical output from the R Shiny app for the 
D2 and D3 pooling strategy – efficiency over a range of 
prevalence values (10% to 20%). (Calculator settings: assay 
sensitivity = 0.95; maximum allowable dilution = 0.20; 
maximum allowable pool size =25; assay specificity = 0.99)
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