
1

Cost per Thousand Transactions (CPT)
Can decentralized networks enable ​data-rich​ apps? Why ​Cost Per Thousand

Transactions​ is the most important metric we should be measuring.

Chris McCoy
STORE Labs, Inc.

$STORE
San Francisco, CA
chris@storelabs.org

Rag Bhagavatha
STORE Labs, Inc.

$STORE
San Francisco, CA
rag@storelabs.org

Abstract
In this paper, we introduce ​Cost Per Thousand transactions (CPT), a unit, which can
be used to compare the cost of processing 1,000 transactions on various
blockchain-based protocols. We compute CPT from the point of view of senders
(developers/users) and miners because a) senders bear the cost of submitting
transactions in the form of transaction fees and b) miners bear the cost in the form
of infrastructure they need to run to process transactions. ​We argue that CPT
should be a primary variable in any network’s economic model as it influences both
the cost to end users and profitability of miners. ​We conclude the following in this
paper.

1. Miner profitability is critical to the long term sustainability of any
blockchain network. ​The profitability cannot be described purely in the
form of miner’s stake and the potential block reward to calculate the return
on investment (ROI). Cost to run the infrastructure matters and CPT is one
such measure that can help with the accurate calculation of the ROI.

2. Network usage is affected by transaction fees. ​Low or no transaction fees
attract users and developers. CPT for end users helps with estimating this
cost, so developers, for example, ​can determine if it is profitable to build
their apps on a particular platform​.

3. All blockchain networks assess a “decentralization premium” — the cost
overhead due to ​decentralization​, which is a systematic approach to replace
trust​. The cost overhead must not be too high compared to centralized cloud
services because ​if the decentralization premium of a network is too high, it
may not be economically viable to develop apps on that network​.

2

In this paper, we measure the CPT for some of the well known Proof-of-Work
(PoW) and Proof-of-Stake (PoS)-based blockchain protocols, so their respective
costs can be compared side by side.

We have specifically excluded analyzing layer-2 scaling solutions in this paper
because of the permutations possible with layer-1. We examine CPT from layer-1’s
perspective.

Key takeaways
We show in this paper that networks like Ethereum, EOS, Tron, etc. are not designed to run real
world, complex, data-rich applications. We make a case for why dApps can only run what they are
intended for — smart contracts with little to no data (so, nothing much to persist permanently) and
very little processing requirements (so, not much RAM or CPU cycles are required) — and why
such architectures cannot run even a low end application because of the costs associated with
renting RAM/CPU and bandwidth. The implications for the industry are:

1. the ​impracticality of launching real world applications on decentralized platforms.​ Not all
application logic can be wrapped into a set of smart contracts, so platforms must be
economically viable for running data-rich web applications

2. exorbitant cost of running applications on decentralized platforms ​— high ​decentralization
premium​, and

3. having to secure resources such as RAM and bandwidth in advance​ to be able to run the
applications. Since the resources are rented or purchased in respective marketplaces, it is
extremely hard to forecast the cost of acquiring the required resources in advance, which in
turn makes it harder to predict the cost of running the apps on these platforms.

Terminology

CPT​ — Cost per Thousand Transactions. This is the cost to process one thousand transactions in a
blockchain network. This cost is measured against end users or developers and the miners in the
network.

Sender (Developer/User) CPT​ — This is the CPT for end users or developers, depending on who is
sending transactions. This cost represents the transaction fee and any other fee associated with
reserving network resources, such as bandwidth, CPU, and memory. These fees are paid by
developers or users. For example, users pay transactions fees in Bitcoin and Ethereum networks, but

3

reserve RAM and bandwidth on EOS. For dApps launched on EOS, developers may pay for
reserving network resources on behalf of their users. In //STORE, developers and users pay no
transaction fees for settlement transactions, but developers pay for p2p cloud compute resources for
hosting their apps on the //STORE Platform.

Miner CPT​ — This is the CPT for the miners of the network. Miners run the infrastructure to
process transactions and secure the network. Miner CPT measures that cost of running the
infrastructure per one thousand transactions.

Miner revenue per thousand transactions​ — This is the revenue the miners earn per one thousand
transactions. When we don’t have the data to measure this, we use Sender (Developer/User) CPT as
the potential revenue for the miners.

Low end app ​— An app that stores 512 bytes of data and runs for 20 ms per app instance. This
models an app that is equivalent to a smart contract dApp on decentralized networks.

High end app ​— An app that stores ~9.26 MB of data and runs for 1 second per app instance. This
app models a complex, real world, data-rich application.

Summary of CPTs for PoW and PoS networks
Table 1 summarizes the Sender (Developer/User) CPT, miner CPT, and miner revenue for 1,000
transactions for different protocols analyzed in this paper. We’ll discuss specific models used for
each of the protocols, assumptions, how to interpret the results, and other details later in this paper.
The data from July 2018 to July 2019 is used to compute the CPT for various protocols.

4

Table 1 — Comparison of Sender (Developer/User) CPT and miner CPT for different

protocols 1

Table 1 compares CPTs for Bitcoin, Cosmos, Ripple, and //STORE settlement layers as one group
as they are used predominantly for settlement transactions — transactions that process payments or
are used to update the global state of the blockchain. The //STORE Platform, AWS, EOS, Tron,
and Ethereum are compared as a second group. These platforms run applications of varying
capacities — from smart contract based dApps to full fledged data and processing-heavy enterprise
apps. For both groups, we calculate the sender CPT separately from the miner CPT, so the cost to
senders as well as miners can be compared.

1 The data from July 2018 to July 2019 is used to compute the CPT, except as noted in table 1.

5

Setup and assumptions for computing CPT
In this analysis, we compute the CPT for the following protocols and compare them against the
CPT for a centralized cloud service. We use the Amazon Web Service (AWS) for its widespread
adoption and cheaper cost to the application developers. Similar models can be built to compare
the CPT with other centralized cloud services also.

1. Bitcoin
2. Ethereum 1
3. Cosmos
4. EOS
5. Ripple
6. Tron
7. //STORE (not yet launched).

Some of the networks listed above (Bitcoin, Ripple) are used predominantly to send payment
transactions while others (Ethereum, EOS, Tron) are used to develop smart contract based dApps.
The Cosmos Network is an ​internet of blockchains​ and in this analysis we compute the CPT for the
Cosmos Hub. Finally, //STORE is a zero-fee payments and p2p cloud computing public blockchain
that allows deployment of complex, data rich applications called “tokenized apps” (tApps). Since
//STORE supports both settlement transactions and tApps, the CPT is computed separately for
each layer.

Some of the data we use in this analysis represent estimates while others represent actual
information based on available on-chain statistics. We will mark this clearly when we discuss the
models below.

Transaction costs are measured across 3 vectors where data is available. They are:

1. Developer / user cost
2. Miner revenue
3. Miner cost

When data for the miner cost is not available, but data for the miner revenue is available, we use the
latter with the assumption that marginal revenue is equal to marginal cost.

A major cost factor is the ​human cost​ — the cost to manage the respective networks. However, this
cost is not easy to normalize across different networks. For example, a Validator node on the
Cosmos Network can be managed by a competent devops person, but a large Bitcoin mining farm

6

may require a much bigger team to manage its operations. For this reason, we do not include this
cost in the miner CPT calculations.

Methodology

The protocols analyzed in this paper belong to different categories (PoW vs PoS), provide different
capabilities (payments, smart contracts, application development, etc.), work in different setups
(private, centralized, permissionless, and authenticated), and use different economic incentive
models to reward their miners. So, a single methodology cannot be used to compute the CPT across
all protocols. At the same time, the methodology selected for a protocol must be ​fair​, so the results
are comparable. In this section, we describe the methodology used to compute the CPT for each
protocol listed in table 1.

AWS (Amazon Web Services — Centralized cloud service)
We analyze developing and running apps on a centralized cloud service, such as the AWS, to model
the cost where the “decentralization premium” is zero. Cost to developers should be lowest in this
case. We make the following assumptions in this model.

1. Transactions​ in decentralized networks are equivalent to ​instances​ of apps on centralized
cloud services.

2. Throughput​ in transactions/second (TPS) in decentralized networks is equivalent to
concurrency​ on centralized cloud services.

3. Developers bear the cost of hosting their apps on centralized cloud services.
4. The apps query and read 5 x the data created and written by them. So, read operations and

data transfers are 5 x the write operations and data transfers.
5. A typical cloud deployment requires using load balancers and firewalls. While AWS

provides these services​ [6.b, 6.c, 6.d, 6.e]​, the cost of using them parallels or outstrips the cost of
running compute instances and storage services on AWS. The cost is mainly due to the
volume of data transfers arising from the high throughput we assume in this model. For this
reason, we assume that app developers use alternative approaches listed below as cheaper
options of these services.

a. Nginx based application load balancer ​[3.c]​.
b. Hardware based firewall ​[3.d]​.

Using these options requires expertise on them and operational overheads exist, but cost
savings justify using them.

In order to calculate the CPT for developers, we assume two scenarios.

7

1. An app that stores 512 bytes of data per app instance and runs for 20 ms. This models an app
that is equivalent to a smart contract dApp on decentralized networks.

2. An app that stores ~9.26 MB of data per app instance and runs for 1 second. This app models
a complex, real world, data-rich application.

Parameters
512 byte, 20

ms/instance app
9.26 MB, 1

second/instance app

Throughput (tps) 5,000 5,000

Transaction (record) size (tsz) 512 bytes 9.26 MB

Memory required in MB to run one instance of the
app (m)

32 512

Execution duration in ms (t) 20 1,000

Number of app instances that can be run in 1GB
memory in 1 second (gbs) = 1,024/m x 1000/t.
Practically, the efficiency is ~half of this number.

1,600/2 = 800 2/1 = 1

RAM required in GB to support claimed throughput
(r) = tps/gbs

6.25 5,000

Amazon EC2 instance ​[3.b]​ to match the memory
capacity required above. We assume developers
prepay annually.

2 x c5n.large @$946.08
each

7 x r5.24xlarge @ $52,980.48
each

Annual cost of Amazon EC2 instances (Cec2) $1,892.16 $370,863.36

Nginx server cost for load balancing ​[3.c] ​amortized
over 3 years (Cng)

2 x $1,100 (10 gbps
throughput) = $2,200/3 =
$733.33

2 x $1,100 (10 gbps
throughput) $2,200/3 =
$733.33

Firewall ​[3.d] ​cost amortized over 3 years (Cfw) 2 x $1,150.60/3 = $767.06 2 x $1,150.60/3 = $767.06

Estimated annual storage in GB (S) = tps x tsz 2 75,187.6831 1,425,895,312.5

Annual cost of storage with EBS (SSD gp2 volume) @
$0.10 per GB-month (Cebs)

$90,225.22 $1,711,074,375

Annual cost of storage with S3 @ $0.023 per
GB-month for up to 50TB and $0.021 per GB-month
for higher tiers + data access + data transfer (Cs3)

@$2992.28 per month =
$35,907.36

@ 36,821,747.63 per month =
$441,860,971.56

2 In the first year of app deployment, the storage accumulates on a daily basis, so the annual storage estimated is not
rented from day 1. However, over time, estimated annual storage needs to be rented for 1 year’s worth of data, so we
assume that for calculating storage cost.

8

Enterprise broadband internet connection $7,800 per
year (Cbb)

$7,800 $7,800

Electricity cost @ $4,200 per year (Cel) $4,200 4,200

Rent cost ​[4.b] ​@ $3,000 per year (Cre) $3,000 $,3000

Total annual cost to developer with EBS storage
(Tebs) = Cec2 + Cng + Cfw + Cebs + Cbb + Cel + Cre

$108,617.77 $1,711,461,738.75

Total annual cost to developer with S3 storage (Ts3)
= Cec2 + Cng + Cfw + Cs3 + Cbb + Cel + Cre

$54,299.91 $442,248,335.31

Developer CPT with EBS storage = Tebs / (Annual
Tx) x 1,000

$0.000688 $10.854

Developer CPT with S3 storage = Ts3 / (Annual Tx)
x 1,000

$0.000344 $2.8046

Miner CPT No data available No data available

Miner (Amazon) revenue per 1,000 transactions with
EBS storage
(same as the developer CPT)

$0.000688 $10.854

Miner (Amazon) revenue per 1,000 transactions with
S3 storage
(same as the developer CPT)

$0.000344 $2.8046

Table 2 — Developer CPT on AWS

Table 2 illustrates that developer cost and hence their CPT depends largely on the choices they
make on storage services, amount of data being read and written, and optimizations to other
services they need, such as the load balancer, firewall, etc. In this analysis, we assume that the data is
read frequently, so we don’t consider modeling with infrequent storage options provided by AWS.

Data to compute the miner (Amazon) CPT is not available for this model.

Bitcoin

Average transaction size ​[1.b] ~500 bytes

Period for transaction fee data ​[1.c] July 8, 2018 — July 7, 2019

Transaction fees collected in the above period $120,483,216

Number of transactions in the above period (N) 105,938,859

9

Average cost per transaction (Tc) $1.137

Sender (Developer/User) CPT = Tc x 1,000 $1,137

Miner revenue in the above period ​[1.c] ​(R) $4,063,786,796

Revenue per transaction (Tr) = R / N $38.36

Miner CPT (method 1: assuming marginal revenue can
be set equal to marginal cost) = Tr x 1,000)

$38,360

Average daily hashrate in the above period ​[1.c] 46,948 ph/second

Number of S9 Antminers ​[1.f]​ (@14 th/second) required
to produce daily hashrate

3,353,428.5714

Daily electricity required (@1.475kW) by S9 Antminers 118,711,371.42

Electricity cost per day in China ​[1.f] ​ @$0.08/kWh (Ec) $9,496,909.71

Amortized cost of S9 Antminers @$2,000 per unit, over
3 years Ac = ((​3,353,428.5714 x $2,000) / 3) / 365

$6,124,983.69

Total annual cost to miners Mc = (Ec + Ac) x 365 $5,701,991,091

Miner CPT (Method 2, based on the cost to miners) =
(MC / N) x 1,000

$53,823

Table 3 — Sender (Developer/User) CPT and miner CPT for Bitcoin

Cosmos

The Validators in the Cosmos Hub don’t interpret what the transactions are and don’t impose any
size restrictions. The transaction size depends on individual zones connected to the Cosmos Hub.
For this analysis, we assume a transaction of ~500 bytes.

Average transaction size ~500 bytes

Period used to compute average ATOM price ​[2.c] June 15, 2019 — July 14, 2019

Average price of ATOM in the above period (A) $5.73

Number of Validators in the Cosmos Hub (N) 100

Average block reward given to Validators (r) 3.81

Average block time 6.892 seconds

10

Estimated blocks created annually (B) 4,575,740

Estimated annual block rewards (Br) = B x r 17,433,569

Estimated Validator commission (vc) 10%

Estimated annual miner revenue (R) = vc x Br x A $9,981,881

Estimated average throughput (th) 300 TPS

Estimated revenue for 1,000 transactions $1.055

Estimated block size (bs) 2MB

Estimated average hardware cost (2 x servers @$10,000
each + 2 HSM @ $150 each) ​[2.e] ​amortized over 3 years
(hc)

$6,767

Estimated average annual operating cost:
- Cost for firewall and server operation = $900/month

 - Backup location operation = $900/month
 - 5 Sentry nodes on AWS = $300/month (oc)

$25,200

Annual storage required = B x bs 9.15148 TB

Cost of storage @0.125 per GB per month and $0.065
per provisioned IOPS-month on Amazon EBS
Provisioned IOPS​[2.f]​ SSD volume (cebs) 3

(9.15148 x 1000 x 0.0625 x 12) + (0.065
x 1,000 x 12) = ​$7,643.61

Cost of storage @0.023 per GB per month and $0.005
per 1,000 PUT and $0.0004 for 1,000 GET requests ​[2.f]
on Amazon S3 (cs3). We assume 1 GET and 1 PUT
requests per block.

(9.15148 x 1000 x 0.023 x 12) + (0.005 +
0.0004) x 4,575,740 / 1,000 = ​$2,550.51

Estimated average self staking per Validator ​[2.b]​ in
ATOMs

10,000

Cost of self staking per Validator, spread over 3 years
(sc)

$19,100

Total annual cost with EBS storage to Cosmos
Validators Cebs = N x (hc + oc + cebs + sc)

$5,871,027

Total annual cost with S3 storage to Cosmos Validators
Cs3 = N x (hc + oc + cs3 + sc)

$5,361,717

Miner CPT with EBS storage = (Cebs / total annual
transactions) x 1,000

$0.6205

Miner CPT with S3 storage = (Cs3 / total annual
transactions) x 1,000

$0.5667

3 We assume storage on Amazon because this avoids having to buy, provision, maintain, and upgrade SSD storage
servers as data usage increases. With cloud storage, the cost is accrued as the storage is used.

11

Sender (Developer/User) CPT with EBS storage =
Miner CPT / 0.75 (assumes 25% profit margin on miner
cost)

$0.82733

Sender (Developer/User) CPT with S3 Storage $0.7555

Table 4 — Sender (Developer/User) CPT and miner CPT for Cosmos

At present, transaction fees are not uniformly assessed and enforced by Validators. Cosmos allows
each Validator to determine the transaction fees based on their cost of running the nodes and
desired profitability. We are unable to get reliable data on transaction fees, so we assume that
Validators expect a 25% profit margin and use it to determine the Sender (Developer/User) CPT in
table 3.

At present, there is no data available on how Validators store blockchain data. In this analysis, we
assume storage on Amazon EBS and S3​[2.f]​ since both can be provisioned and used on demand to
control the cost of storage. For S3, we assume that Validators perform all persistence related
calculations locally and minimize reading from and writing to S3.

Ripple

Period used to compute the annual number of
transactions and transaction fees collected ​[3.a]

July 08, 2018 — July 07, 2019

Annual number of transactions ​[3.a] ​(Tx) 207,314,968

Annual transaction fees​[3.a] ​(Tf) $134,944

Sender (Developer/User) CPT = (Tf / Tx) x 1,000 $0.65

Number of Validators in Ripple private network (N) 5

Estimated annual storage (St) ​[3.e] 3.0 TB

Estimated average transaction size 500 bytes

Estimated hardware cost per Validator (I3 High I/O
Quadruple Extra Large) ​[3.b, 3.e]​. This instance comes with
3.8TB of SSD storage. (C)

$10,932

Estimated total cost to run 5 Validators (Ct) = N x C $54,660

Estimated miner CPT = (Ct / Tx) x 1,000 $0.2637

Estimated throughput Ripple is capable of based on ​[3.f] 1,500

12

Estimated miner CPT based on the above throughput =
(Ct / 1,500 x 60 x 60 x 24 x 365) x 1,000

$0.00115

Miner revenue No data is available

Table 5 — Sender (Developer/User) CPT and miner CPT for Ripple

The Sender (Developer/User) CPT is computed based on the annual number of transactions and
transaction fees collected ​[3.a]​. Since this data is readily available, Sender (Developer/User) CPT
calculation is straightforward. We need the cost of running Ripple nodes in order to compute the
miner CPT. However, this information is not available. So, we use the recommendation ​[3.e]​ Ripple
provides to determine the estimated cost of running a Ripple node and the resulting miner CPT.
Ripple claims it can handle 1,500 transactions per second ​[3.f]​. We also estimate the miner CPT based
on this claim. As the throughput increases, the miner CPT decreases.

We are also unable to collect data regarding miner revenue and hence we are not able to calculate
the miner revenue per 1,000 transactions.

//STORE (settlement layer)
//STORE settlement layer supports zero-fee transactions. ​Developers/user neither pay a
transaction fee nor reserve network resources to have their transactions processed.​ The //STORE
network in the settlement layer consists of two types of nodes — a) compute nodes, called
Validators and b) consensus and storage nodes, called Messagenodes. So, miner CPT and miner
revenue per 1,000 transactions are computed for these two node types. //STORE’s Byzantine Fault
Tolerant consensus algorithm ​[4.a]​ assembles and validates blocks in a pipelined, multi-stage process,
resulting in multiple blocks finalized on a continuous basis. Table 6 analyzes the cost of the
//STORE settlement layer in one of its launch phases.

Parameters Validators Messagenodes

Number of nodes in the network (N) 70 22

Estimated number of blocks finalized per second (b) 5

Estimated number of transactions in a block (tb) 550

Estimated block size in KB (bsz)
(transactions + header + signatures)

300

Estimated throughput in TPS (Tx) = b x tb 2,750

13

Estimated annual storage in GB (s) = b x (bsz in GB)
x number of seconds in 1 year

44,055.28

Nginx server (entry level) cost for load balancing ​[3.c]

amortized over 3 years (Cng)

2 x $750 (1 gbps
throughput) x 70 /3 =
$35,000

2 x $750 (1 gbps throughput) x
22 /3 = $11,000

Firewall ​[3.d] ​(entry level) cost amortized over 3 years
(Cfw)

2 x $807.40 x 70/3 =
$37,678.67

2 x $807.40/3 = $11,841.87

1/ Hardware option:

Supermicro SYS-E300-8D server @ $1,500 per server,

amortized over 3 years (Cser) x 2 x 70 / 3 = $70,000 x 2 x 22 / 3 = $22,000

Storage @ $47/GB (Cst) = s x $47
(Each Messagenode stores its own copy)

$2,070,598.16 x 22 =
$45,553,159.51

Enterprise broadband internet connection $7,800 per
year (Cbb)

7,800 x 70 = $546,000 7,800 x 22 = $171,600

Electricity cost @ $4,200 per year (Cel) 4,200 x 70 = $294,000 4,200 x 22 = $92,400

Rent cost ​[4.b] ​@ $3,000 per year (Cre) $3,000 x 70 = $210,000 $,3000 x 22 = $66,000

Total cost with hardware option (Thw) = Cng + Cfw
+ CSer + Cst + Cbb + Cel + Cre

$1,192,678.67 $45,928,001.38

Total annual network cost for all Validators and
Messagenodes (Chw)

$47,120,680.04

Miner CPT = Chw / (annual Tx) x 1,000 $​0.54334

Estimated miner revenue per 1,000 transactions =
25% profit over miner CPT

$0.7244

1.a/ Storage optimized with erasure coding and 3
copies of data

Storage @ $47/GB (Cst) = s x $47
(Messagenode pool storage with 3 copies of erasure
encoded data)

$2,070,598.16 x 1.2 x 3 =
$7,454,153.38

Total annual network cost with optimized storage $9,021,673.91

Miner CPT with optimized storage $0.1040

Estimated miner revenue per 1,000 transactions =
25% profit over miner CPT

$0.1387

2/ Cloud option (nodes are hosted on AWS):

14

Amazon EC2 (Cser)
c5d.large @ $840.96 per
instance x 2 x 70=
$117,734.4

m5d.large @ $989.88 x 4 x 22 =
$87,109.44

Storage: latest 1 month’s data on EBS (SSD gp2
volume) and 11 month’s data on S3 x 3 copies (Cst)

a) 3671.2733 GB @ $0.1
GB-month x 22 = ​$8,076.80
b) 40,384.0066 x 3 GB on S3 +
(data access + data transfer) x 5
x number of blocks in 11 months
@ $4,273.52 per month =
$51,282.24

Total: ​$59,359.04

Enterprise broadband internet connection $7,800 per
year (Cbb)

7,800 x 70 = $546,000 7,800 x 22 = $171,600

Electricity cost @ $1,440 per year (Cel)
(Estimated only for the firewall)

1,440 x 70 = $100,800 4,200 x 22 = $31,680

Total cost with hardware option (Tcloud) = Cng +
Cfw + CSer + Cst + Cbb + Cel

$837,213.07 $372,590.35

Total annual network cost for all Validators and
Messagenodes (Cloud)

$1,209,803.42

Miner CPT = Cloud / (annual Tx) x 1,000 $​0.01395

Estimated miner revenue per 1,000 transactions =
25% profit over miner CPT

$0.0186

Developer CPT
(Zero-fee transactions for developers)

$0

User CPT
(Zero-fee transactions for users)

$0

Table 6 — Miner CPT and miner revenue per 1,000 transactions for //STORE settlement

layer

Miner Revenue per 1,000 Transactions​ — Since the //STORE network is not launched yet, there is
no information on the revenue for miners. For the sake of analysis, we will assume the value of
revenue earned by //STORE miners will be calculated based on a 25% margin requirement set on
total miner costs. This means if the miner CPT is $1.00, then the revenue per 1,000 transactions
would be $1.33. Note: ~$0.33 in gross profit divided by $1.33 in total revenue is ~25% gross profit
margin.

15

//STORE (platform layer)
//STORE peer-to-peer decentralized cloud platform allows arbitrary web applications to run in a
secure sandbox. It is not a smart contract platform to developer dApps. Developers pay for network
resources, such as memory, storage, and bandwidth and the developer experience will be similar to
centralized cloud services like AWS. For that reason, we’ll use the same scenarios we used for
analyzing the developer cost for AWS, so the costs can be compared for “decentralization
premium”.

In the //STORE Platform, miners organize into “Cloud Markets” to provide cost effective cloud
services to app developers. A Cloud Market consists of a subset of Validators and Messagenodes,
who help secure the apps hosted on it. For this analysis, we assume a cloud market consisting of 10
Validators and 10 Messagenodes. Table 7 models the miner cost analysis for the //STORE Platform.
Since the goal is to compute the “decentralization premium”, this model also assumes that //STORE
nodes will be hosted on AWS — this model doesn’t explore the hardware-only option.

Parameters
512 byte,

20ms/instance app
9.26 MB, 1

second/instance app
Number of Validation miners in the Cloud Market (Nv) 10

Number of Storage miners in the Cloud Market (Ns) 7

Estimated throughput (tps) 5,000 5,000

Transaction (record) size (tsz) in bytes 512 9,709,814

Memory required in MB to run one instance of the app
(ma) 32 512

Memory overhead of the sandbox in MB, per app instance
(ms) 128 128

Total memory required in MB to run one instance of the
app (m) 160 640

Execution duration of the app in ms (ta) 20 1,000

Startup and shutdown cost of the sandbox in ms (ts) 10 10

Total duration to run one instance of the app (t) 30 1,010

Number of app instances that can be run in 1GB memory
in 1 second (gbs) = 1,024/m x 1000/t. Practically, the
efficiency is ~half of this number. 107 0.79

RAM required in GB to support claimed throughput (r) =
tps/gbs 46.88 6,312.50

Apps are distributed to Validation miners for execution.
Average RAM required per Validator (Rv) = r / Nv 4.69 631.25

16

Amazon EC2 instance to match the memory capacity
required above. We assume Validation miners prepay
annually. Each validation miner provides slightly higher
capacity for redendancy.

(2 x c5n.large @$946.08 each)
x Nv

(60 x r5n.large @ $1,305.24
each) x Nv

Annual cost of Amazon EC2 instances for Validation
miner group (Vec2) $18,921.60 $783,144.00

Annual cost of Amazon EC2 instances for Storage miner
group (Sec2). Each miner runs 4 EC2 instances for
redundancy. $27,716.64 $27,716.64

Nginx server cost for load balancing amortized over 3
years (Vng). For Validation miner group. $5,000.00 $7,333.33

Nginx server cost for load balancing amortized over 3
years (Sng). For Storage miner group. $3,500.00 $5,133.33

Firewall cost amortized over 3 years (Vfw). For Validation
miner group. $5,382.67 $7,666.67

Firewall cost amortized over 3 years (Sfw). For Storage
miner group. $3,767.87 $5,366.67

Enterprise broadband internet connection $7,800 per year
(Vbb). For Validation miner group. $78,000.00 $78,000.00

Enterprise broadband internet connection $7,800 per year
(Sbb). For Storage miner group. $54,600.00 $54,600.00

Electricity cost @ $4,200/$12,600 per year for low/high end
app. (Vel). For Validation miner group. $42,000.00 $126,000.00

Electricity cost @ $4,200/$8,400 per year for low/high end
app. (Sel). For Storage miner group. $29,400.00 $58,800.00

Rent cost @ $3,000 per year (Vre) for Validation miners. $30,000.00 $30,000.00

Rent cost @ $3,000 per year (Sre) for Storage miners. $21,000.00 $21,000.00

Estimated annual storage in GB (S) = tps x tsz with 50%
overhead for metadata and erasure coding overheads. 112,781.52 2,138,842,968.8

Annual cost of storage with EBS (SSD gp2 volume) @ $0.10
per GB-month (Cebs) with erasure coded data
(All Storage nodes share this cost). $135,337.83 $2,566,611,562.50

Annual cost per Storage miner with EBS $19,333.98 $366,658,794.64

Annual cost of storage with S3 at $0.021 per GB-month for
higher tiers + data access + data transfer (Cs3) $53,523.96 $626,913,660.00

Annual cost per Storage miner with S3 $7,646.28 $89,559,094.29

Total annual cost to Validation miner group (Vc) = Vec2 +
Vng + Vfw + Vbb + Vel + Vre $179,304.27 $1,032,144.00

Total annual cost to Storage miner group with EBS storage
(Sebs) = Sec2 + Sng + Sfw + Sbb + Sel + Sre + Cebs $275,322.34 $2,566,784,179.14

Total annual cost to Storage miner group with S3 storage
(Ss3) = Sec2 + Sng + Sfw + Sbb + Sel + Sre + Cs3 $193,508.47 $627,086,276.64

Validation miner CPT (Vcpt) = Vc / (Annual Tx) x 1,000 $0.001137 $0.00655

https://www.ec2instances.info/?cost_duration=annually
https://www.ec2instances.info/?cost_duration=annually
https://www.ec2instances.info/?cost_duration=annually
https://www.ec2instances.info/?cost_duration=annually
https://cdn-1.wp.nginx.com/wp-content/files/nginx-pdfs/Sizing-Guide-for-Deploying-NGINX-on-Bare-Metal-Servers.pdf
https://cdn-1.wp.nginx.com/wp-content/files/nginx-pdfs/Sizing-Guide-for-Deploying-NGINX-on-Bare-Metal-Servers.pdf
https://cdn-1.wp.nginx.com/wp-content/files/nginx-pdfs/Sizing-Guide-for-Deploying-NGINX-on-Bare-Metal-Servers.pdf
https://cdn-1.wp.nginx.com/wp-content/files/nginx-pdfs/Sizing-Guide-for-Deploying-NGINX-on-Bare-Metal-Servers.pdf

17

Storage miner CPT with EBS storage (ScptEBS) = Sebs /
(Annual Tx) x 1,000 $0.00175 $16.2784

Storage miner CPT with S3 storage (Scpts3) = Ss3 /
(Annual Tx) x 1,000 $0.00123 $3.9770

Total miner CPT with EBS storage = (Vc + Sebs) / (Annual
Tx) x 1,000 $0.00288 $16.28498

Total miner CPT with S3 storage = (Vc + Ss3) / (Annual
Tx) x 1,000 $0.00236 $3.98350

Miner revenue per 1,000 transactions with EBS storage =
25% profit over miner CPT $0.00360 $20.35623

Miner revenue per 1,000 transactions with S3 storage = 25%
profit over miner CPT $0.00296 $4.97938

User CPT
(Zero-fee tokenized app transactions for users) $0

Developer CPT with EBS storage
(same as the Miner revenue) $0.00360 $20.35623

Developer CPT with S3 storage
(same as the Miner revenue) $0.00296 $4.97938

Table 7 — Sender (Developer/User) CPT, Miner CPT and miner revenue per 1,000

transactions for //STORE platform layer

The developer CPT is the same as miner revenue​ above because the //STORE Platform is not live
yet. We expect that miners require this payment from developers.

An interesting aspect of a developer running on //STORE platform is that if they are paying miners
in the STORE token, it means they get to keep 100% of the datacoins minted from their data usage.
This could help offset costs they pay to miners. The amount of revenue generation that represents
for the developer would depend on the value of their data over time. If miners think the data is
going to be valuable for a given app, they are likely to give them free compute resource in return for
a guaranteed percentage share of the datacoin revenue and/or issuance over time.

EOS

Period used to compute the annual transactions and
block rewards for EOS

July 08, 2018 — July 07, 2019

Average block producer cost per year ​[7.e and 7f] ​(Bc)
(low: $80,000 and high: $1,400,000)

$​925,625

Number of block producers (N) 21

18

Total estimated cost to block producers (C) = Bc x N $19,438,125

Total number of annual transactions ​[7.b and 7.d]​ (Tx) 1,809,078,749

Throughput (tps) based on Tx above ~​58

Miner CPT = (C / Tx) x 1,000 $10.745

Starting EOS supply on July 08, 2018 ​[7.d]​ (Ss) 886,777,795

Estimated annual EOS issuance at 5% rate (Ai) = Ss x 5% 44,338,890

Annual issuance to block producers (bi) = 20% x Ai 8,867,778

Annual issuance to 21 top block producers (Bi) = 25% x
bi

2,216,944

Average price of EOS in the above period 4.84

Average revenue in the same period (R) $10,730,011

Miner revenue per 1,000 transactions = (R / Tx) x 1,000 $5.93

Table 8 — Miner CPT and miner revenue for 1,000 transactions for EOS

EOS has no transaction fees, but developers/users must stake in EOS to use compute resources from
block producers (BPs). Developers/users have to lockup EOS tokens until they are done using
network resources. This presents some challenges and major cost variances.

In order to calculate Sender (Developer/User) CPT, we assume two scenarios.

3. An app that stores 512 bytes of data per app instance. So, RAM usage is 512 bytes. This
models a simple smart contract application.

4. An app that stores ~9.26 MB of data per app instance. This app models a complex, real
world, data-rich application.

For each scenario, we assume that the annual transactions shown in the table 8 are of that type.
Table 9 builds Sender (Developer/User) CPT based on the above assumptions. ​This is updated as of
March 22, 2020.

Parameters 512 byte app 9.26 MB app

Cost per kilobyte as of March 2020 ​[7.a]​ (Ck) $0.124 $0.124

Storage required per transaction in kilobytes (Sk) 0.5 9,482.24

19

Cost of storage per transaction (Tc) = Ck x Sk

$0.062 $1,175.79

Sender (Developer/User) CPT = Tc x 1,000

$62 $1,175,790

Table 9 — Miner CPT for EOS

On EOS network ​[7.a]​, developers/users may not even be able to reserve the required RAM because
not enough RAM may be available in the marketplace. The purpose of this analysis is to
demonstrate that even a simple app that stores half a kilobyte of data has a high cost to
developers/users. Of course, the staked EOS tokens are returned when users release the reserved
storage, but otherwise, tokens are locked making this a true cost to run apps on EOS.

For this analysis, we didn’t consider reserving the bandwidth ​[7.a]​, which is required in addition to
reserving storage. Since the cost per transaction is already unreasonable, we didn’t consider that
including the bandwidth in the calculation alters that conclusion.

TRON
TRON is a hybrid between requiring developers/users to pay and requiring them to stake for using
network resources. TRON measures its resources in terms of energy points (to measure CPU use)
and bandwidth (bytes). A certain amount of TRX is required per energy point and per byte used in
order run dApps on TRON network. In this analysis we assume two app scenarios as we did in EOS
model.

1. An app that stores 512 bytes of data and takes 20ms to run per app instance. This models a
simple smart contract application.

2. An app that stores ~9.26 MB of data and takes 1 second to run per app instance. This app
models a complex, real world, data-rich application.

.

Parameters 512 byte, 20ms app 9.26 MB, 1 second app

Runtime of the transaction in ms (rt) 20 1,000

Energy points required per transaction at 1 energy
point per microsecond (e)

20,000 1,000,000

Price per energy point in​[8.a and 8.c]​ TRX (pe) 0.009726 0.009726

TRX required per transaction (Te) = pe x e 194.52 9,726

Transaction size in bytes (Tx) 512 9,709,814

20

Price per byte​[8.a and 8.b]​ in TRX (be) 0.17459 0.17459

TRX required per transaction (Tb) = be x Tx 89.39 1,695,236.42

Total cost per transaction (C) = Te + Tb 283.91 1,704,962.58

Price per TRX (p) $0.0344 $0.0344

Sender (Developer/User) CPT = C x p x 1,000 $9,766.5 $58,650,713

Miner CPT No data available No data available

Miner revenue per 1,000 transactions No data available No data available

Table 10 — Sender (Developer/User) CPT for TRON

Ethereum
Ethereum is a PoW-based smart-contract platform to develop dApps. There is no limit on the
transaction size, but there is a gas size limit per block, which determines how much computation
can be included in a given block ​[9.a]​. This means there is some upper limit for the computation of a
given transaction.

Period used to compute the annual transactions and block
rewards for Ethereum

July 08, 2018 — July 07, 2019

Annual number of transactions in the above period ​[9.b]​ (Tx) 226,499,001

Annual transaction fees collected in the above period (f) $43,522,664

Sender (Developer/User) CPT = f/Tx x 1,000 $192

Miner revenue ​[9.b]​ from block rewards and transaction fees in
the above period (R)

$1,388,219,425

Miner revenue per 1,000 transactions = R/Tx x 1,000
(Assuming marginal revenue can be set equal to marginal
cost, this is one way to calculate miner CPT.)

$6,129

Average daily hashrate ​[9.b]​ in mH/second (h) 201,747,525.13

Daily hashrate of Sapphire ​[9.c]​ Radeon RX 570 GPU used by
miners in mH/second (hs)

25

Daily power used by Sapphire Radeon RX 570 GPU in kWh
at a rating of 130 watts (Ps) = 0.13 x 24

3.12

Average cost of Sapphire Radeon RX 570 GPU (cs) $217

21

Theoretical number of GPUs required to produce average
daily hashrate (Ns) = h / hs

8,069,901

Total daily power required for all GPUs (P) = Ns x Ps 25,178,091.12

Total daily cost of power required at $0.08 per kWh (Cp) = P
x $0.08

$2,014,247.29

Daily cost of GPUs required to produce daily hashrate,
amortized over 3 years for its useful life (Cs) = (cs x Ns) / 365 /
3

$1,599,240.65

Total cost to produce daily hashrate (Cd) = Cs + Cp $3,613,487.94

Estimated annual cost of hashrate (C) = Cd x 365 $1,318,923,098.1

Miner CPT = C / Tx x 1,000
(Based on the cost to miners)

$5,823.08

Table 11 — Sender (Developer/User) CPT, miner CPT, and miner revenue per 1,000

transactions for Ethereum

References
1. Bitcoin —

a. https://en.bitcoin.it/wiki/Maximum_transaction_rate
b. https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
c. https://www.blockchain.com/charts/
d. https://medium.com/@andrew_young/valuing-bitcoin-694d97e5bdf2
e. https://www.ovoenergy.com/guides/energy-guides/average-electricity-prices-kwh.ht

ml
f. https://en.bitcoinwiki.org/wiki/Antminer_S9

2. Cosmos Network —
a. https://www.mintscan.io/
b. https://cosmos.bigdipper.live/
c. https://coinmarketcap.com/currencies/cosmos/historical-data/
d. https://stakingrewards.com/asset/atom
e. https://medium.com/@davekaj/how-to-become-a-cosmos-validator-276862d5bfc7
f. https://aws.amazon.com/ebs/pricing/ and https://aws.amazon.com/s3/pricing/

3. Ripple —
a. https://coinmetrics.io
b. https://www.ec2instances.info/?cost_duration=annually

22

c. https://cdn-1.wp.nginx.com/wp-content/files/nginx-pdfs/Sizing-Guide-for-Deployin
g-NGINX-on-Bare-Metal-Servers.pdf

d. https://www.firewalls.com/barracuda-nextgen-firewall-f18-26818.html?gclid=EAIaIQ
obChMInv2zovjq3gIVWyCtBh1lyQLMEAYYASABEgIZm_D_BwE

e. https://xrpl.org/capacity-planning.html
f. https://www.ripple.com/xrp/market-performance/

4. //STORE (settlement layer) —
a. https://research.storecoin.com/BlockfinBFT
b. https://www.atlantech.net/colocation-pricing

5. //STORE (platform layer) —
a. https://storecoin.com/cloud

6. AWS —
a. https://aws.amazon.com/s3/pricing/
b. https://aws.amazon.com/elasticloadbalancing/pricing/
c. https://aws.amazon.com/config/pricing/
d. https://aws.amazon.com/waf/
e. https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.h

tml
7. EOS —

a. https://www.eosrp.io/
b. https://coinmetrics.io/
c. https://stakingrewards.com/asset/eos
d. https://coinmarketcap.com/currencies/eos/#charts
e. https://docs.google.com/spreadsheets/d/1OF0OvzgqkkaGAgemi5kNBCbzyp3a8sCk6

CCEbG7Y9zA/edit#gid=230278607
f. https://medium.com/coinmonks/survey-of-eos-block-producers-cf9677561db7

8. TRON —
a. https://tronstation.io/calculator
b. https://developers.tron.network/docs/bandwith
c. https://developers.tron.network/docs/energy

9. Ethereum —
a. https://medium.com/@piyopiyo/how-to-get-ethereum-block-gas-limit-eba2c8f32ce
b. https://etherscan.io/charts
c. https://miningchamp.com/gpus/150/Sapphire-Radeon-RX-570-8GB-hashrate

