Omadacycline Exposure After a Light Meal

Kelly Wright, PharmD, BCPS; Alisa W. Serio, PhD; Amy Manley, MS; Stephen A. Bai, PhD; Surya Chitra, PhD

Paratek Pharmaceuticals, Inc., King of Prussia, PA, USA

Background

Omadacycline is a novel aminomethylcycline antibiotic approved to treat adults with community-acquired bacterial pneumonia (CABP) or acute bacterial skin and skin structure infection (ABSSSI)¹

Patients taking omadacycline are instructed to fast for 4 h before and 2 h after oral dosing (no dairy products, antacids, or multivitamins for 4 h)¹

The effect of a light meal on omadacycline pharmacodynamics (PD) is unknown

Methods

A phase 1, open-label, single sequence study enrolled 12 participants who received a single oral 300 mg dose of omadacycline while fasting and approximately 60-90 min after having orange juice and toast²

Washout period: ≥4 days between the last dose in one period and the first dose in the next period

Concentration-time profiles for Days 2 and 5 for 5-day dosing regimens were simulated from Day 1 data

Regimens: A: 300 mg QD Days 1–5; **B:** 600 mg Day 1, then 300 mg QD Days 2–5; C: 450 mg QD Days 1–2, then 300 mg QD Days 3–5; D: 450 mg QD Days 1–5

Unbound plasma areas under the curve (fAUC; based on 20% plasma protein binding of omadacycline) to minimum inhibitory concentration (MIC) ratio targets were simulated for each regimen using the MIC that inhibits 90% (MIC₉₀) of isolates³

MIC₉₀: Staphylococcus aureus 0.25 mg/L, Streptococcus pyogenes 0.12 mg/L, and Streptococcus pneumoniae 0.12 mg/L³

Efficacy targets were previously derived from in vivo models. Stasis targets for common ABSSSI pathogens S. aureus (median target = 21.9) and S. pyogenes (median target = 33.3) and a 1-log₁₀ reduction target for a common CABP pathogen, S. pneumoniae, (median target = 17.4) were applied to simulated exposures^{4,5}

Funding and disclosures KW, AWS, AM, SAB, and SC: Employee – Paratek Pharmaceuticals, Inc. This study was funded by Paratek Pharmaceuticals, Inc. Medical editorial assistance, funded by Paratek Pharmaceuticals, Inc., was provided by Innovative Strategic Communications.

Effect of a Light Meal on the Pharmacodynamics of Omadacycline

Objectives

To simulate the effect of a light meal on omadacycline PD using phase 1 study data

To compare simulated omadacycline exposures to efficacy targets for common ABSSSI and CABP pathogens S. aureus, S. pyogenes, and S. pneumoniae

Conclusions

Omadacycline exposures remained above efficacy targets for key ABSSSI and CABP pathogens for all regimens except regimen A on Day 2 in fed state against S. aureus, which then exceeded the target on Day 5

Results

All four regimens exceeded median fAUC/MIC₉₀ ratio targets for stasis against S. aureus and S. pyogenes and 1-log₁₀ reduction for S. pneumoniae, except for Regimen A on Day 2 in a fed state against S. aureus, which increased above the target by Day 5

		fAUC/MIC ₉₀			
		Day 2		Day 5	
Pathogen	Regimen*	Fasted	Fed	Fasted	Fed
S. aureus		Median target for stasis = 21.9			
	A: 300 mg	27.2	20.0	31.5	25.1
	B: 600/300 mg	38.2	28.2	32.2	25.7
	C: 450/300 mg	36.4	26.8	32.7	26.1
	D: 450 mg	36.4	26.8	42.1	33.5
S. pyogenes		Median target for stasis = 33.3			
	A: 300 mg	54.4	40.0	63.0	50.2
	B: 600/300 mg	76.4	56.4	64.4	51.4
	C: 450/300 mg	72.8	53.6	65.4	52.2
	D: 450 mg	72.8	53.6	84.2	67.0
S. pneumoniae		Median target for 1-log ₁₀ reduction = 17.4			
	A: 300 mg	54.4	40.0	63.0	50.2
	B: 600/300 mg	76.4	56.4	64.4	51.4
	C: 450/300 mg	72.8	53.6	65.4	52.2
	D: 450 mg	72.8	53.6	84.2	67.0

*Regimens were **A:** 300 mg QD Days 1–5; **B:** 600 mg Day 1, then 300 mg QD Days 2–5; **C:** 450 mg QD Days 1–2, then 300 mg QD Days 3–5; and **D**: 450 mg QD Days 1–5. Omadacycline MIC for S. aureus: MIC₉₀: 0.25 mg/L and Streptococcus spp.: MIC₉₀: 0.12 mg/L

fAUC/MIC ratios were approximately 25% lower on Days 2 and 5 after a light meal compared with fasted

Ratios increased with simulated higher doses or loading doses

Similar increases were observed regardless of the loading dose strategy employed

References

- 1. NUZYRA® (omadacycline) Prescribing Information. King of Prussia, PA: Paratek Pharmaceuticals, Inc., 2020.
- 2. Hunt TL, et al. Eur J Drug Metab Pharmacokinet. 2021;46:85–92.
- 3. Pfaller MA, et al. Antimicrob Agents Chemother. 2020;64:e02488–19.
- 4. Lepak AJ, et al. Antimicrob Agents Chemother. 2017;61:e02368-16.
- 5. Lepak AJ, et al. Antimicrob Agents Chemother. 2019;63:e00624–19.