
Skill Struck’s alignment to

Utah K-5 Computer Science
Standards

Legend

✅ = Standard aligned
🔹 = Not currently aligned

Standard Status

K.CS.1 Select computing devices that perform a variety of tasks accurately
and quickly based on user needs and preferences.
(Practice 1: Fostering an Inclusive Computing Culture)
Students will select computing devices (phone, tablet, computer, cameras,
software, 3D printers, etc.) and understand that they can be used to aid in
a task (email, text message, voice calls, videos, digital imaging, modeling,
etc.).

✅

K.NI.1 Model and describe how people connect to other people and
information through a network.
(Practice 4: Developing and Using Abstractions)
Students will be able to model and describe how information is sent and
retrieved using a network to share information as a class. For example,
demonstrating through the game of “telephone” (asking students to pass
a message from one person to another). This can include sending words,
images, etc. Students should demonstrate their understanding of this flow

✅

1



of information by drawing a model of the way packets are transmitted,
programming an animation to show how packets are transmitted, or
demonstrating this through an unplugged activity which has them act it
out.

K.NI.2 Create patterns to communicate a message.
(Practice 4: Developing and Using Abstractions)
Students will use digital devices to create patterns with pictures, objects or
words to communicate. Examples may include basic coding for simple
directions with arrows, manipulatives, simple directions, etc. These basic
coding examples can be classroom routines, such as what to do when you
enter the classroom each day.

✅

K.DA.1 Identify and describe patterns in data visualizations, such as charts
or graphs, to make predictions
(Practice 4: Developing and Using Abstractions)
Students will show data in a pattern, which could include images of
favorite fruit, sport, or cookie. Students will show what would be next in a
pattern, or what might be missing from a pattern. This could be color,
number, animal, or letter pattern. Teachers can use digital tools to model
data visualizations for students, this could be done with an interactive
board, tablets, or computers.

✅

K.AP.1 Model processes by creating and following algorithms to complete
tasks.
(Practice 3: Recognizing and Defining Computational Problems and
Practice 4: Developing and Using Abstractions)
Students will complete a familiar process or activity by creating
algorithms to follow specific instructions. Emphasize real life examples,
ordering, and sequenc- ing such as brushing teeth, lining up to go to
lunch, school safety drills. Expose students to algorithms as sequencing
events.

✅

K.CT.1 Decompose problems into smaller manageable parts to better
understand them.

✅

2



(Practice 3: Recognizing and Defining Computational Problems)
Students will be able to take a complex problem and break it down into
smaller components. Examples may include breaking down the steps
needed to make breakfast, get ready for school, or to code a character
across the screen. Teachers may use digital tools to diagram components
of a task such as drawing a shape.

1.CS.1Operate a variety of computing devices that perform tasks
accurately and quickly based on user needs and preferences.
(Practice 1: Fostering an Inclusive Computing Culture)
Students will perform a variety of tasks by operating digital devices
(laptop, tablet, desktop, etc.) based on availability and the task they are
seeking to accomplish. For example, if students are asked to draw a
picture, they should be able to open and use a drawing app/program to
complete this task.

✅

1.CS.2 Explore the functions of common hardware and software
components of computing systems.
(Practice 6: Testing and Refining Computational Artifacts and Practice 7:
Communicating About Computing)
Students will explore and identify common hardware and software
components (mouse, keyboard, storage, trackpad, tablet devices, laptop,
monitor, application (app), input, output, etc.) as well as their function.

✅

1.DA.1 Collect and present data in various visual formats. (Practice 4:
Developing and Using Abstractions and Practice 7: Communicating About
Computing)
Students will create surveys of things that interest them (such as favorite
foods, colors, books, etc.), collect answers, and decide how to present the
data in various visual formats (tally marks, color blocks stacked, sticky
notes, etc.). Teachers can use digital tools to model data visualizations for
students.

✅

1.DA.2 Identify and describe patterns in data visualizations (unplugged or
digital), such as charts or graphs, to make predictions.

✅

3



(Practice 4: Developing and Using Abstractions)
Students will identify and describe patterns to create hypotheses based
on data visualizations (charts, graphs, etc.). Examples include drawing a
picture graph and a bar graph with single-unit scale using a drawing
app/program to represent a data set with up to four categories or using a
chart to sort and predict colors of M&M’s in a bag. This focus is making
predictions based on data.

1.AP.1Demonstrate understanding of the way programs store and
manipulate data as variables, such as numbers, words, colors, and
images.
(Practice 4: Developing and Using Abstractions)
Students will demonstrate understanding of how computers store data
(input) in a variety of ways (variables) that a program can use. For
example, a number variable can only store a number and not letters. An
alphanumeric variable can store numbers or letters but cannot be added
or subtracted because it is text. Students could use thumbs up/down as
representations of yes/no, use arrows when writing algorithms to
represent direction, or in code and decode words using numbers,
pictographs, or other symbols to represent letters or words.

✅

1.AP.2 Break down (deconstruct) algorithms and list the steps needed to
solve a problem into a sequence of tasks and sub-tasks.
(Practice 3: Recognizing and Defining Computational Problems)
Students will be able to identify the steps needed to solve a problem.
Students will understand that algorithms are specific instructions in order
to complete a familiar process or activity. Students may use digital tools
to demonstrate order- ing and sequencing of a task. Emphasize real life
examples, ordering, and sequencing such as putting on your shoes, writing
a story with a beginning, middle, and end, checking out library books, etc.
For example, student may break down the steps needed to draw a shape
or coding steps to move a character across the screen.

✅

1.AP.3Create programs with sequences (steps) of com- mands and ✅

4



simple loops (repeated patterns), to express ideas or address a problem.
(Practice 5: Creating Computational Artifacts)
Students will create programs using elementary block programing (such
as unplugged or ScratchJr on a device) that contain simple loops. These
loops are repeating a pattern to create an image (such as a square), or to
address a problem (such as hopscotch or designing a code that allows an
avatar to avoid a barrier).

1.IC.1 Develop and demonstrate the ability to work respectfully and
responsibly with others whether communicating face-to-face or digitally.
(Practice 2: Collaborating Around Computing)
Students will develop and demonstrate proper etiquette when
collaborating with others, physically or digitally.

✅

1.CT.1 Determine the steps needed to solve a problem and develop a
sequence of instructions.
(Practice 3: Recognizing and Defining Computational Problems)
Students will analyze a real-world problem and develop instructions that
determine the steps necessary to achieve the intended outcome such as
creating a peanut butter and jelly sandwich. The connection with
computer science is the need to be clear and detailed with action steps so
the outcome is what is desired. Teachers may use digital tools to diagram
components of a task such as making simple foods.

✅

1.CT.2 Recognize similarities between new problems and problems that
have been solved in the past.
(Practice 3: Recognizing and Defining Computational Problems)
Students will have the opportunity to consider how previous
problem-solving and code development have similarities. The use of
previous solutions and strategies is useful in crafting a new solution. For
example, how do the lessons learned from determining steps to create a
peanut butter and jelly sandwich inform the development of steps to
create a school lunch?

✅

2.CS.1Describe and solve basic hardware and software problems. ✅

5



(Practice 7: Communicating About Computing)
Students will describe, solve and perform basic troubleshooting tasks such
as checking the device for battery charge and/or power connection,
checking cord connections, turning a device off and on to reboot it, closing
and reopening an app/program, plugging in headphones, etc.

2.NI.1 Explain what a password or pass phrase is, why it is used, and be
able to create a secure password.
(Practice 7: Communicating About Computing)
Learning to protect one’s device or information from unwanted use by
others is an essential first step in learning about cybersecurity. Students
will be able to explain the reasoning behind having certain digital
resources password protected and create an effective password and/or
pass phrase.

✅

2.DA.1Demonstrate how to store, copy, search, retrieve, modify and delete
information using a computing device, and define the information stored
as data.
(Practice 4: Developing and Using Abstractions)
Students will demonstrate how to create, modify, and save projects using
the devices, platforms, applications, and software available. Data can be
images, text documents, audio files, software programs or apps, video
files, etc. The information is specific to data, not text within a single text
document.

✅

2.DA.2Collect and present data in various visual formats. (Practice 4:
Developing and Using Abstractions and Practice 7: Communicating
About Computing)
Students will collect and present data in various visual formats, such as
drawing a picture graph and a bar graph (with single-unit scale) with up
to four categories. Students will create surveys of things that interest them
(such as favorite foods, colors, books, etc.), collect answers, and decide
how to present the data in various visual formats (picture graphs and bar
graphs). Teachers can use digital tools to model data visualizations for

✅

6



students and students may collaborate to create and present digital data.

2.DA.3 Identify and describe patterns in data visualizations to make
predictions.
(Practice 4: Developing and Using Abstractions)
Students will make predictions by identifying and describing information in
picture graphs and bar graphs. For example, the class may create and
analyze a digital pictograph of favorite animals in the class. Students will
make predict favorite animals for the grade level based on patterns
observed.

✅

2.AP.1Deconstruct the steps needed to solve a task into a sequence of
instructions.
(Practice 3: Recognizing and Defining Computational Problems)
Students will be able to identify the steps needed to solve a problem.
Students will understand that algorithms are specific instructions in order
to complete a familiar process or activity. Students may use digital tools
to demonstrate ordering and sequencing of a task, such as code a
character to move across the screen or solve a coding puzzle. Emphasize
real life examples, ordering, and sequencing such as putting on your
shoes, writing a story with a beginning, middle, and end, checking out
library books, etc.

✅

2.AP.2Collaboratively develop plans that describe a program’s sequence
of events, goals, and expected outcomes.
(Practice 5: Creating Computational Artifacts and Practice 7:
Communicating About Computing)
Students will collaborate to develop a digital program using a sequence of
events that includes goals and expected outcomes. The focus is on team
or pair-programming on device and leveraging roles to develop a shared
solution. For example, students may work in teams to navigate an avatar
to reach a goal.

✅

2.AP.3 Properly credit others when using their ideas and creations while
developing programs.

✅

7



(Practice 7: Communicating About Computing)
Using computers comes with a level of responsibility. Students will properly
credit work by citing work inspired by others when developing digital
programs.

2.AP.4Debug and solve simple problems within an algorithm or program
that includes sequences and simple loops.
(Practice 6: Testing and Refining Computational Artifacts)
Students will test algorithms to find problems and resolve errors (debug)
within the program. Students will start with an existing code that includes
sequences and/or simple loops and determine the errors in the code to
make improvements to achieve the task. This can be done both on device
and with unplugged activi- ties. For example, students create an
alternative emergency exit plan with alternative routes for evacuation drill.

✅

2.AP.5 Summarize the steps taken and choices made during the iterative
process of program development.
(Practice 7: Communicating About Computing)
Students will summarize how a digital project was created and revised.
For example, students will be able to answer who, what, where, when, why,
how, etc. about the final program solution.

✅

2.IC.1Describe how technology has impacted society over time.
(Practice 3: Recognizing and Defining Computational Problems)
Students will compare the advances in technology and describe how it
has impacted society. For example, students can consider how a cell
phone saves phone numbers in contacts and consider how that impacts
whether people know important phone numbers and how that impacts
society.

✅

2.IC.2Describe rationales for keeping login information private, and for
logging off devices appropriately.
(Practice 3: Recognizing and Defining Computational Problems)
Students will describe why people keep passwords private and secure and
demonstrate how to log on and off digital devices appropriately.

✅

8



3.CS.1Describe and model how computing devices connect to other
components to extend their capabilities and form a system.
(Practice 7: Communicating About Computing)
Students will describe and model how computing devices connect to
other devices or components (physical or wireless) to create a system. For
example, the relationship between the respiratory and circulatory system
during physical activity serves as a metaphor for how the parts of a
computer connect to allow input, processing, and output.

3.NI.1Describe physical and digital security measures for protecting
personal information.
(Practice 3: Recognizing and Defining Computational Problems)
Students will identify personal information and describe physical and
digital measures for protecting it. Examples of physical security may
include a lock on the door, a safe, covering the camera on your device.
Examples of digital security may include virus protection software, , strong
passwords, biometric scanners (e.g., fingerprint, facial recognition), etc.

✅

3.NI.2Develop personal patterns of behavior to protect information from
unauthorized access.
(Practice 4: Developing and Using Abstractions)
Students will begin to develop habits that protect their personal
information. For example, using strong passwords, changing passwords
often, logging off devices, etc.

✅

3.DA.1 Organize and present collected data visually to highlight
relationships and support a claim.
(Practice 7: Communicating About Computing)
Students will organize and present data collected using visualizations. For
example, draw a scaled picture and scaled bar graph to represent data,
with several categories. Gathering data may be used as an instructional
strategy, but it is not required of students.

✅

3.DA.2 Use data to communicate ideas, highlight relationships, and
predict outcomes.

✅

9



(P7.1)
Students will use data to communicate ideas to emphasize relationships
and predict outcomes. For example, using a scaled bar graph, students
will predict what flavors of ice cream will be most popular among the third
grade population.

3.AP.1Create programs that include events, sequences, loops, and simple
conditionals to express ideas or address a problem.
(Practice 5: Creating Computational Artifacts)
Students will create programs using an elementary block coding program
(e.g. ScratchJr.) that include events, sequences, loops, and simple
conditionals to complete a task. The new components for third grade are
events (starting your computer and having applications automatically
start) and simple conditionals (if you click on the character then the
character jumps 3 times).

✅

3.AP.2Modify a previously created program that uses variables to store
and modify data.
(Practice 5: Creating Computational Artifacts)
Students will save and modify data of previously created programs that
use variables. For example, students can take an existing elementary block
coding program (e.g. ScratchJr.) that collects what time you get up for
school in the morning and modify it to collect what time you get home
from school in the afternoon.

✅

3.AP.3 Test and debug a program or algorithm to ensure it accomplishes
the intended task.
(Practice 6: Testing and Refining Computational Artifacts)
Students will test and make corrections (debug) to verify programs (an
existing elementary block coding program or a recipe) run properly,
similar to proofreading writing. The focus is on testing all aspects of a
program before beginning the debugging process.

✅

3.AP.4 Perform different roles when collaborating with peers during the
design, implementation, and review stages of program development.

✅

10



(Practice 2: Collaborating Around Computing)
Students will collaborate, in a variety of roles, in the program development
process (design, implementation, and review). This builds on the team or
peer programming from the previous year. The students will take steps to
define and select roles, as well as trading roles during the project to learn
different aspects of collaboration in computer science. For example, roles
may include being the navigator, developer, time manager, quality
control, etc.

3.AP.5 Use an iterative design process to plan and develop a program by
considering the perspectives and preferences of others.
(Practice 1: Fostering an Inclusive Computing Culture and Practice 5:
Creating Computational Artifacts)
Students will understand the process of planning (key features, time and
resource constraints, and user expectations) before developing a
program. Once the program is created, they will review the program with
another team for feedback before revising (iterating) and creating an
improved program.

✅

3.AP.6Create programs by incorporating smaller portions of existing
programs to develop something new or add more advanced features.
(Practice 4: Developing and Using Abstractions and Practice 5: Creating
Computational Artifacts)
Students will incorporate pre-established programs into their original
draft. The existing program will only address part of the necessary solution,
requiring students to develop and add new code to achieve the desired
outcome.
For example, using an existing program that collects data on student
lunch preferences, and adding a feature that directs the program to
display the class data at the end of the program.

✅

3.IC.1 Evaluate how computing technologies have changed the world, and
express how those technologies influence, and are influenced by, cultural
practices.

✅

11



(Practice 3: Recognizing and Defining Computational Problems)
Students will evaluate how the advances in technology have impacted
society and analyze how those technologies have influenced culture. For
example, students may consider how the use of headphones has
changed the world and consider societal changes such as how people
wearing headphones may not engage in conversations while waiting for
public transportation, but also have access to voice translation when
speaking with people in different languages.

3.IC.2 Describe reasons creators might limit the use of their work.
(Practice 7: Communicating About Computing)
Students will describe piracy and copyright and why owners limit the use
of their work.

✅

3.CT.1Decompose problems into smaller manageable tasks which may
themselves be decomposed.
(Practice 3: Recognizing and Defining Computational Problems)
Students will consider a broader challenge, such as improving the
classroom recycling program, and identify and decompose the problem
into smaller tasks such as signage, education, using different receptacles
for paper vs. plastic, etc.

✅

3.CT.2 Recognize common patterns between problems and recurring
patterns within problems.
(Practice 3: Recognizing and Defining Computational Problems)
Students will be able to recognize common patterns within problems, such
as the challenges of accommodating all students and parents at school
drop off and similarities with challenges of the entire school eating lunch
at the same time. After identifying the similarities in challenges, students
can brainstorm other problem scenarios that share in these patterns.

✅

4.CS.1Demonstrate how computer hardware and software work together
as a system to accomplish tasks.
(Practice 4: Developing and Using Abstractions)
Students will describe and model how computing devices connect to

✅

12



other devices or components (physical or wireless) to create a system. For
example, the relationship between the respiratory and circulatory system
during physical activity serves as a metaphor for how the parts of a
computer connect to allow input, processing, and output.

4.NI.1 Model how information is broken down into smaller pieces called
packets and transmitted through multiple devices over physical or
wireless paths and reassembled at the destination.
(Practice 4: Developing and Using Abstractions)
Students will learn and model different pathways information travels to
and from devices. For example, students will have a set of tennis balls
(packets) that have information on each one. Students will hit tennis balls
one at a time over the net. If the ball does not clear net, that represents
packet loss and represents message not being sent. Tennis balls that clear
the net will then be reassembled to deliver message.

✅

4.DA.1 Select, organize, and categorize data and represent that data
visually to provide clarity or support a claim.
(Practice 7: Communicating About Computing)
Students will organize and present data collected using visualizations. For
example, when working with a data set of popular songs, data could be
shown by genre or artist. Graphs, charts, and infographics can all
represent the statistical characteristics of the data. An additional
visualization may include making a line plot using provided data sets;
include a horizontal scale, title, labels, and straight columns of symbols to
represent the data points (• or X).

✅

4.DA.2 Use data to highlight and propose relationships, predict outcomes,
or communicate ideas.
(Practice 7: Communicating About Computing)
Students will use data to communicate ideas to emphasize relationships
and predict outcomes.
For example, demonstrating irrelevant data connections such as
predicting age by eye color or predicting the outcome of an election by

✅

13



polling only a few people.

4.AP.1 Compare and refine multiple algorithms for the same task, using
computer and non-computer languages, and determine which is the
most appropriate.
(Practice 3: Recognizing and Defining Computational Problems and
Practice 6: Testing and Refining Computational Artifacts)
Students will collaborate, in a variety of roles, in the program development
process (design, implementation, and review). This builds on the team or
peer programming from the previous year. The students will take steps to
define and select roles, as well as trading roles during the project to learn
different aspects of collaboration in computer science.
For example, roles may include being the navigator, developer, time
manager, quality control, etc.

✅

4.AP.2 Create programs that include events, loops, and conditionals.
(Practice 5: Creating Computational Artifacts)
Students will create a set of instructions (a program) that include events,
loops, and conditionals to facilitate and manage tasks. Students will
create programs using an elementary block coding program (e.g.
ScratchJr.) that include events, sequences, loops, and simple conditionals
to complete a task. Event examples include mouse clicks, typing on the
keyboard, and collisions between objects. Conditional statements are sets
of commands that are tied to specific actions based on whether the
condition evaluates to TRUE or FALSE.

✅

4.AP.3Decompose problems into smaller, manageable tasks which may
be then be broken down further.
(Practice 3: Recognizing and Defining Computational Problems)
Students will decompose a program into smaller, more manageable
parts. For example, decomposition at this level is creating an animation by
separating a story into different scenes. For each scene, a background
needs to be selected, characters placed, and actions programmed. The
instructions required to program each scene may be like instructions in

✅

14



other programs.

4.AP.4 Test and debug a program or algorithm to ensure it accomplishes
the intended task.
(Practice 6: Testing and Refining Computational Artifacts)
Students will test and make corrections (debug) to verify programs run
properly.

✅

4.IC.1 Evaluate computing technologies that have changed the world and
express how those technologies influence and are influenced by cultural
practices.
(Practice 3: Recognizing and Defining Computational Problems)
Students will evaluate how the advances in technology have impacted
society and explain how those technologies have influenced culture. For
examples, students can investigate the evolution of a technology (such as
cameras, phones, or audio devices) and discuss the impact of those
changes.

✅

4.IC.4 Propose ways to improve the accessibility and usability of
technology products for the diverse needs and wants of users.
(Practice 1: Fostering an Inclusive Computing Culture)
Students will reference current technology and diverse user needs to
brainstorm, collaborate, and propose innovative (new) technologically
accessible ideas. For example, students may investigate voice-to-text,
translation to other languages, and adaptive devices.

✅

4.CT.1Determine specific aspects of patterns between or within problems
that can be abstracted out to leave only the common or important
elements.
(Practice 3: Recognizing and Defining Computational Problems and
Practice 4: Developing and Using Abstractions)
Students will determine patterns within problems to identify core
elements. Students will seek to identify key strategies to address the core
elements, and then build a solution to address the comprehensive
problem. For example, when the school is purchasing recess equipment,

✅

15



the students can identify possible challenges and problems that may exist
for their community. Students can identify how to address those problems
individually, then create a comprehensive solution to make sure recess is
a success.

5.CS.1Create potential solutions to solve hardware and software problems
using common troubleshooting strategies.
(Practice 4: Developing and Using Abstractions and Practice 6: Testing and
Refining Computational Artifacts)
Students will find common hardware and software troubleshooting
solutions. For example, checking power source, restarting programs
and/or device, checking physical and wireless connections, etc.

✅

5.NI.1Model how information is broken down into smaller pieces,
transmitted as packets (data groups) through multiple devices over
networks and the Internet, and reassembled at the destination.
(Practice 4: Developing and Using Abstractions)
Students will understand the functional use of routers and switches to
send packets across multiple paths for communicating information to its
destinations (such as wired connections, Wi-Fi, light (fiber optics), etc.). For
example, students may create diagrams, models, written explanations,
presentations etc. to demonstrate their understanding of the concept of
transmitting packets.

✅

5.DA.1 Explain how the amount of space required to store data differs
based on the type of data and level of detail and that the utility of that
data varies.
(Practice 7: Communicating About Computing)
Students will be able to explain that text files are smaller than picture files
which are smaller than movie files. Additionally, students will be able to
identify the utility of different data types, such as how you can use
numerical data vs. alpha- numeric data in your analysis. For example, a
number variable can only store a number and not letters. An
alphanumeric variable can store numbers or letters but cannot be added

✅

16



or subtracted because it is text.

5.DA.2 Organize and share collected data visually to highlight
relationships and support a claim.
(Practice 7: Communicating About Computing)
Students will be able to refer to organized data when communicating an
idea. For example, students may make a line plot about how many
students share a length of their shoe size in inches using provided data
sets; include a horizontal scale, title, labels, and straight columns of
symbols to represent the data points (• or X).

✅

5.DA.3 Prioritize, analyze and use data to communicate ideas, highlight
relationships and predict outcomes.
(Practice 7: Communicating About Computing)
Students should will be able to select and prioritize relevant data from
large or complex data sets in support of a claim or to communicate the
information in a more sophisticated manner. For example, looking at a
data set of earthquakes over the past 20 years to determine what data is
relevant to predict a future earthquake.

✅

5.AP.1 Compare and refine multiple algorithms for the same task and
determine which is the most appropriate.
(Practice 3: Recognizing and Defining Computational Problems and
Practice 6: Testing and Refining Computational Artifacts)
Students will compare different algorithms that achieve the same result,
and determine which algorithm is more appropriate.
For example, students will compare different ways to get ready in the
morning before school or which is the best route to get to the lunchroom.

✅

5.AP.2Decompose problems into smaller, manageable tasks which may
themselves be deconstructed and analyzed.
(Practice 3: Recognizing and Defining Computational Problems)
Students will decompose problems into smaller tasks to complete said
task. For example, students creating maps of counties to compose a full
state map or students working in teams to create acts to put on a

✅

17



three-scene play.

5.AP.3Create programs by incorporating smaller portions of existing
programs, to develop something new or add more advanced features.
(Practice 4: Developing and Using Abstractions and Practice 5: Creating
Computational Artifacts)
Students will create a new program, based on portions of existing
programs.
For example, teacher gives a writing prompt where students create an
animation and design alternative endings.

✅

5.AP.4 Use an iterative process to plan and develop a program by
considering the perspectives and preferences of others.
(Practice 1: Fostering an Inclusive Computing Culture and Practice 5:
Creating Computational Artifacts)
Students will plan and develop a solution for another person’s problem. For
example, a student has a hard time completing homework. The team
designs a solution for how to manage time in order to complete
homework, gathers data on the new solution, and revises the solution.

✅

5.AP.5 Recognize and observe intellectual property rights and give
appropriate attribution when creating, remixing, or combining programs.
(Practice 5: Creating Computational Artifacts and Practice 7:
Communicating About Computing)
Students will explain the concepts of ownership and sharing and be able
to cite the owner. For example, a downloaded image may have restrictions
that prohibit modification of an image or using it for commercial
purposes.

✅

5.AP.6 Describe choices made during program development using code
comments, presentations, and demonstrations.
(Practice 7: Communicating About Computing)
Students will describe the process used to develop a program using
comments, presentations, and demonstrations. For example, students will
be able to explain their selection of controlled variables in a science

✅

18



investigation.

5.IC.1 Propose ways to improve the accessibility and usability of
technology products for the diverse needs and wants of users.
(Practice 1: Fostering an Inclusive Computing Culture)
Students will propose improvements of current technology based on
needs and wants of a user. For example, having programs read in multiple
languages, modifying hardware to meet the needs of a user, etc.

✅

5.IC.2 Seek and explain the impact of diverse perspectives for the purpose
of improving computational artifacts.
(Practice 1: Fostering an Inclusive Computing Culture)
Students will research and explain how computing technologies influence,
and are influenced by, cultural practices. For example, looking at school
website and diverse student and parent needs to improve upon the
website design and layout.

✅

5.CT.1Develop algorithms in computer programs to solve problems,
including unique and repeated sub-tasks within a larger program.
(Practice 3: Recognizing and Defining Computational Problems and
Practice 5: Creating Computational Artifacts)
Students will research and explain how computing technologies influence,
and are influenced by, cultural practices. For example, looking at school
website and diverse student and parent needs to improve upon the
website design and layout.

✅

19


