
RESULTS
• Training using 15 cases and <75 annotations sufficient for all three tissues
• Algorithm tuned for high sensitivity (error towards falsae positives) 
• Key endpoint= Tumor Positive or Tumor Negative at 100% concordance with 

testing group
• Workflow optimized to allow for visual (heat map presentation) for efficient 

diagnostic support for pathologist
• Decison to verify the positive control group could be made in minutes 

(versus days) without the need for data entry and revioew of non essential 
tissues

•

CONCLUSIONS

• The DL-CNN algorithm provided efficient decision support for the pathologist
• The algorithm design supported high sensitivity for the intended use 
• The workflow using the DL-CNN support tool would save approximately 3 

working days of specialist (pathologist) effort per study
• The DL-CNN support tool could be extended to other tissues for tumor 

screening

Deep Learning enables screening for  tumor positive and negative 

Tg-RasH2 mice in positive control groups at 100% concordance 

with toxicologic pathologists.

Hypothesis: Deep Learning-based algorithms can effectively screen for 

proliferative lesions in Tg-RasH2 mice 

INTRODUCTION 

• Preclinical carcinogenicity studies require considerable pathology effort and 
involving the evaluation of 10000 to 30000 or more tissues 

• Large proportion of these being normal or having only background 
changes. 

• The Tg-rasH2 mouse, model uses a positive control group treated with a 
known carcinogen such as urethane or N-nitroso-N-methylurea (NMU).

METHODS

• Training & testing sets- 20x whole slide scans (WSS) of serial sectioned H&E 
stained lungs, thymus, and stomach

• Supervised training of a convolutional neural network (CNN) using 
Patholytix Preclinical

• Trainer (ACVP board certified pathologist) verification and retraining
• Testing with separate pathology group using unique digital scan set
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Challenges and Next Steps:

• Cross site study of the DL-CNN algorithm
• Incorporation tool into CRL Tg-RasH2 study workflow
• Test DL-CNN as a “computer” scientific review tool
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