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Adverse Media Mining for KYC and ESG 
Compliance 
ABSTRACT  

In recent years, institutions operating in the global market economy face growing risks 
stemming from non-financial risk factors such as cyber, third-party, and reputational 
outweighing traditional risks of credit and liquidity. Adverse media or negative news screening 
is crucial for the identification of such non-financial risks. Typi- cal tools for screening are not 
real-time, involve manual searches, require labor-intensive monitoring of information sources. 
More- over, they are costly processes to maintain up-to-date with complex regulatory 
requirements and the institution’s evolving risk appetite.  

In this extended abstract, we present an automated system to conduct both real-time and 
batch search of adverse media for users’ queries (person or organization entities) using news 
and other open-source, unstructured sources of information. Our scalable, machine-learning 
driven approach to high-precision, adverse news filtering is based on four perspectives - 
relevance to risk domains, search query (entity) relevance, adverse sentiment analysis, and risk 
encoding. With the help of model evaluations and case studies, we summarize the 
performance of our deployed application. 

1 INTRODUCTION 

In today’s uncertain geopolitical and social environment, global institutions face growing 
challenges to their risk management processes arising from Non-Financial Risk (NFR) factors. 
These non-financial risks include, but are not limited to, conduct, cyber, country, compliance, third-
party, ESG (Environmental, Social and Corporate Governance) risks. Inadequate compliance & 
screening controls have cost top banking institutions and other non-financial firms millions of dollars 
in fines between 2018-2019 alone. In the matter of US Bancorp, fined for lax anti-money laundering 
controls in 2018 [7], it agreed to a $613 million (USD) settlement with US regulators. It had failed to 
report suspicious banking activities car- ried out by the long-time customer, Scott Tucker, from 2011 to 
2013, owner of several payday lending businesses. 

With an increased focus on ESG and other regulatory expecta- tions, institutions have realized the 
importance of integrating ad- verse news monitoring into their frameworks for managing NFRs. 
Adverse Media screening involves the introspection of news and other third-party data sources for 
potential indicators of negative news associated with an entity (person or company). Adverse me- dia 
mining makes use of open-source indicators (publicly avail- able information) as essential early 
warning indicators. In a re- cent study [2, 4], researchers found that Wells Fargo’s reputation 
plummeted after regulators announced the bank’s financial fraud. However, Glassdoor reviews signaled 
the bank had a problem with corporate ethics before the fraud was made public. 
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A fast, automated adverse media mining application. We showcase a system which can scale to high-volume and diverse unstructured data sources, 
that provides both real- time & batch processing entity searches for negative news. 
1. A high-precision adverse news filtering pipeline. We develop a novel pipeline to assess the quality of filtered media by its relevance to the risk 

domains, target entity, and risk attributes (categories and stages of risk). 

2. A searchable database of adverse media profiles. We propose a representation of risk profiles to characterize bet- ter, search and retrieve 
adverse entities. 

2 SYSTEM OVERVIEW 

We briefly outline the key components of our system as shown Fig. 1 for adverse media mining. 

a. News Retrieval & Ingest For each new (entity) user query, we query a lucene-powered news database using full-text search to fetch all news 
articles containing the entity mention. For every single query, we cache the articles and track the search period over which query was issued. This 
helps the system track and monitor what new news data must be fetched for repeat user queries. All news data is stored in an ElasticSearch 
database. 

b. Distributed Computing Infrastructure To process a search query, we make use of Celery-based distributed computing system. We have 
implemented a “data-funelling” pattern of tasks, where each task reduces the number of articles the next task in the pipeline receives. Each task 
operates on a single article, scheduled using asynchronous work queues. We operate a cluster 18 compute nodes with a master task scheduler 
that uses an in-memory, key-value data store for book-keeping. 

 
Figure 1: A schematic overview of the adverse media mining system. 

c. Model Pipeline There are five primary models in our pipeline. 

i. Risk Relevance - a binary relevance classifier based on supervised training of 2500 articles using a support vector machine 
model. This model classified the relevance of each article to an in-domain (risk- related) or out-domain class. We achieved 0.81 
F1 score over a 80/20 train-test split ratio. (2) Adverse Scoring - this is a heuristic model for sentiment scoring that relies 
on the Loughran-McDonald [6] financial sentiment dictionary for computing adversity score of each article. We further 
group and weigh differently those sub- sets of keywords that are negative and related to the legal domain. 

ii. Entity Relevance - Each entity (person or an organization) is assumed relevant to an article if it is an apropos risk domain (com- 
pliance). We manually tagged 1200 articles to train a supervised binary logistic regression model using bag-of-words features from 
contexts extracted around the entity mentions using FlairNLP [1] using which we achieved F1 score of 0.8 in 80/20 train-test split. 

iii. Risk Categorization - This step in our pipeline consists of infer- ence risk categories and stage classification. As shown in Fig. 2, we 
curated a list of fine-grained compliance relevant categories across seven risk types. Using a weakly-supervised labeled data of over 9 
Million news documents, we trained CNN-based [5] text classifier for the multi-label classification task. The initial set of 65 categories were 
expanded using sense2vec [8] to query our internal news database further. Our top-3 categorical accuracy was 0.86 in a 70/30 train-test split. 
(4) Risk Stage Identification - We identified five different criminal proceedings stages that typical compliance events might evolve through. 
Using a similar weak-supervision approach, we trained a multi-class classifier model using XGBoost [3] with we achieved a F1 score of 
0.93 in a 70/30 train-test split. 
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Figure 2: Distribution of the 65 risk categories across the 7 risk 
types. 

Figure 3: A risk profile for an adverse entity “MyPayrollHR”. 

 
 

 

3 DISCUSSION AND CONCLUSION 

Compliance-related risks are continuously evolving. Adverse news provides a snapshot essentially in time that can help profile such non-
financial risk. For example, in Fig. 3, a risk profile for a US- based payroll company MyPayRollHR charged with fraud can be visualized using 
compliance risk categories and stages with which we can provide actionable insights for the user that best meet their risk appetite. This system 
is deployed in production in Compliance Catalyst [9], a KYC monitoring tool. 
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