Baswood BioVore™
Advanced Technology for Municipal Wastewater and Biosolids Management
About Baswood

Baswood delivers innovative, technology-based solutions that provide effective wastewater treatment and biosolids management for a wide range of municipal applications. Baswood offers biological systems using patented technologies that provide a unique combination of increased solids retention and decreased hydraulic retention in a small footprint, resulting in efficient removal of organic contaminants, while minimizing biosolids production.

BioVore™ Advantages

The Baswood BioVore™ provides cost effective, reliable municipal wastewater treatment and biosolids/sludge management within a stable, fixed film biological system. Advantages of the Baswood municipal wastewater solution include the following:

• Low life-cycle costs providing a rapid return on investment
• Sequential, fixed media biotechnology provides highly efficient BOD digestion and improved effluent quality
• Patented Aerobic/Aerobic Integrated Media System (AIMS) integrated media maintains high food to mass (F/M) ratio, resulting in a robust biomass in a system that can handle fluctuating organic loads
• Superior biosolids digestion consistently reduces sludge handling and disposal requirements
• Patented Dry Cycle Aerobic/Aerobic Digestion (DCAD™) process manages the biomass character in the reactors
• Unique vertical configuration of treatment zones allows for system to be constructed with a reduced footprint
• No internal moving parts within the reactors reduces equipment maintenance costs and potential for equipment failure

Baswood Innovation

Baswood’s AIMS™ is a patented hybrid process incorporating aerobic and anoxic (oxygen depleted) environments that maximize biological treatment efficiency and provide optimal BOD digestion and biosolids reduction. Waste is fed sequentially through a series of mixed environment biological fixed film reactors. Within each reactor are three treatment zones that provide sequential biological treatment, resulting in accelerated BOD digestion, as well as biological nutrient removal.

The most significant innovation of AIMS technology is Baswood’s proprietary DCAD™ process. During the DCAD™ process, one of the reaction vessels is taken off line for the purpose of 'pruning' the biomass. Removing the food source and altering the environment in the vessel stresses the ecosystem, causing the healthy bacteria to feed upon weaker/older bacteria, as well as retained residual biosolids. In addition to increasing the digestion capacity of the system, the pruning action of the DCAD™ process manages the hydraulic flow characteristics through the biomass-laden media. The reactor vessels are cycled through the DCAD™ process without taking the system offline, one of the reactor vessels may be in the DCAD™ process at any time.

Baswood’s systems achieve treatment goals with a reduced hydraulic retention and increased solids retention. These factors, along with the efficiency of our DCAD™ technology, result in a smaller physical footprint, reduced volume requirement, and effective sludge reduction. Baswood’s systems also require significantly less operational horsepower compared to other similar sized aerobic technologies.

Operational Simplicity

The following features minimize operational oversight and system maintenance requirements:

• No internal moving parts
• Internal self-buffering reduces chemical use
• Use of commercial off the shelf (COTS) components reduces costs and facilitates simplified maintenance
• Proprietary Supervisory Control and Data Acquisition (SCADA) with remote monitoring capability
The BioVore™ Process

The Baswood BioVore™ process provides for enhanced digestion of BOD and superior biosolids reduction with minimal operator oversight and low maintenance costs. The system is comprised of four reactors, each with three distinct treatment zones in a unique, vertical alignment that provides a relatively small footprint.

The verticality of the system takes advantage of air’s natural tendency to rise through liquids. Air is supplied to the biomass to meet its respiratory needs, rather than as the medium to maintain the mass or the media in suspension. As a result the Baswood system uses a fraction of the energy required by competing technologies to maintain an aerobic environment.

As wastewater passes between three distinct treatment zones in each of four reactors, it is treated a total of 12 times during an 8-hour period. This repetitive exposure to different environments results in accelerated BOD digestion, as well as biological nutrient removal.

At the top of the reactor, wastewater is distributed across the surface and travels downward through the following treatment zones:

Baswood BioVore™ Process Utilizing Patented AIMS™ Technology

1. Wastewater enters the BioVore™ through a series of nozzles that distributes flow evenly across the top of the reactor. Wastewater flows by gravity through a series of three treatment zones.

2. **Zone 1: Trickling Filter**: Water cascades over biotfilm-coated media using passive aeration, enhancing BOD reduction and denitrification.

3. **Zone 2: Facultative Zone**: As solids are sloughed off from the Trickling Filter, they collect at the interface with the Submerged Zone providing additional denitrification.

4. **Zone 3: Submerged Zone**: The solids enter the submerged zone and the naturally occurring hydrophilic bacteria attach to the fixed media, extending the solids retention time (SRT). Respiratory oxygen is supplied to the reactor though an aeration system creating a robust treatment environment below the water line in each reactor.

5. Treated wastewater is piped out from the base of the reactor and into the next reactor in the series, where the three zone treatment process is repeated. A series of four reactors make up the BioVore™ system.

Energy Efficiency

The characteristics of the BioVore™ system that contribute to energy efficiency, as compared to other wastewater treatment systems, include:

- Efficient aeration process uses less energy than traditional aerobic systems
- As a fixed media system, no energy is required to keep either the solids or media in suspension

<table>
<thead>
<tr>
<th>Technology</th>
<th>Kw/Hr Annual</th>
<th>Baswood Benchmark</th>
<th>Water Reuse Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaged Plant High Rate Aerobic</td>
<td>38,108</td>
<td>-114%</td>
<td>Sometimes</td>
</tr>
<tr>
<td>MBR</td>
<td>20,835</td>
<td>-71%</td>
<td>Always</td>
</tr>
<tr>
<td>Activated Sludge</td>
<td>17,422</td>
<td>-43%</td>
<td>Rarely</td>
</tr>
<tr>
<td>MBBR</td>
<td>15,717</td>
<td>-29%</td>
<td>Rarely</td>
</tr>
<tr>
<td>Baswood BioVore™</td>
<td>12,184</td>
<td></td>
<td>Always</td>
</tr>
</tbody>
</table>

Efficiency comparison of Baswood BioVore™ to other technologies