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Abstract. Issuance of cryptocurrencies on top of the Blockchain system
by startups and private sector companies is becoming a ubiquitous phe-
nomenon, inducing the trading of these crypto-coins among their holders
using dedicated exchanges. Apart from being a trading ledger for tokens,
Blockchain can also be observed as a social network. Analyzing and mod-
eling the dynamics of the ”social signals” of this network can contribute
to our understanding of this ecosystem and the forces acting within. This
work is the first analysis of the network properties of the ERC20 protocol
compliant crypto-coins’ trading data. Considering all trading wallets as
a network’s nodes, and constructing its edges using buy–sell trades, we
can analyze the network properties of the ERC20 network. We demon-
strate that the network displays strong power-law properties, coinciding
with current network theory expectations, however nonetheless, are the
first scientific validation of it, for the ERC20 trading data.

The examined data is composed of over 30 million ERC20 tokens trades,
performed by over 6.8 million unique wallets, lapsing over a two years
period between February 2016 and February 2018.

Keywords: Complex Systems, Social Physics, Network Analysis, Blockchain,
Ethereum, Smart contracts, ERC20 tokens, cryptocurrency

1 Introduction

Blockchain technology, which has been known by mostly small technological cir-
cles up until recently, is bursting throughout the globe, with a potential economic
and social impact that could fundamentally alter traditional financial and social
structures. Launched in July 2015 [1], the Ethereum Blockchain is a public ledger
that keeps records of all Ethereum related transactions. It is shared between all
participants and is based on a reward mechanism as an incentive for users to
run the transactions network. A key characteristic of the Blockchain network is
its heavy reliance on cryptography to secure the transactions, addressed as the
consensus mechanism. Each account consists of a public and private key duo,
where the private key is used to digitally sign each account’s transactions, and
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the public key can be used by all Blockchain participants in order to verify the
transaction’s validity, in a rapid, decentralized and transparent way.

The ability of the Ethereum Blockchain to store not only ownership, simi-
larly to Bitcoin, but also execution code, in the form of ”Smart Contracts”, has
recently led to the creation of a large number of new types of ”tokens”, based on
the Ethereum ERC20 protocol. These tokens are ”minted” by a variety of play-
ers, for a variety of reasons, having all of their transactions carried out by their
corresponding Smart Contracts, publicly accessible on the Ethereum Blockchain.

In this regards, the Ethereum Blockchain’s transactions, and ERC20 trans-
actions in particular, constitute a decentralized record of interactions among
participants, with two interesting properties that distinguish it from most of the
traditional interaction collections (such as social network activities, phone-call
records, financial bank transactions):

– Unlimited number of wallets — The Ethereum private key mechanism
enables any participant to create an unlimited amount of unique “wallets”.
Whereas the participant can control all of these wallets easily, it is impossible
for an outside observer to explicitly associate the wallets to each other (with
the exception of an implicit association, through a careful data analysis work,
as can be seen in [2]). This can be compared to a mobile phone network, in
which every participant may hold an infinite amount of different identities,
addressed as phone numbers, all of which can be used at will. Had this
property existed in reality, it would likely render most of recent seminal
works in this field (such as [3–8] and many more) highly impractical, if not
entirely obsolete, as demonstrated in [9].

– Unlimited number of tokens — The ability of participants to create
not only new wallet addresses, but also an unlimited number of new tokens
turns the Ethereum network from a single faceted means of communication
of storage and execution related transactions, to a multi faceted (and in fact,
an infinitely faceted) one, comprised of many different types of interactions,
whose nature widely varies from payment, through decentralized trading in
GPU resources [10], and to consumption of behavioral predictions [11].

As a result, the ERC20 ecosystem and the multitude of transactions it con-
sists of, constitutes one of the most fascinating examples for decentralized net-
works. However, to this day there has not been any in-depth analysis of the
ERC20 tokens network properties .

This work is the first attempt to analyze the ERC20 tokens through a net-
work theory prism. We study two years of ERC20 transactions over the Ethereum
Blockchain, by forming a social network from the participants and their corre-
sponding monetary actions. We show that the ERC20 tokens data, despite being
infinitely faceted and potentially comprised of unlimited amount of single-serving
wallet addresses, still strongly displays several key properties known in network
theory research to characterize sets of human interactions. The direct potential
implication of our discovery is that the ERC20 tokens data is likely to there-
fore also comply with additional known network properties – leading the way
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for the development of an abundance of predictive and descriptive techniques
for the ERC20 tokens transactions, based on known network theory oriented
approaches from other domains.

The rest of the paper is organized as follows: Section 2 contains background
on the topics of this work and review of previous literature related to it. In
Section 3 we thoroughly describe the methodology that was used in this work,
whereas the results are discussed in Section 4. Concluding remarks and discussion
regarding future work appear in Section 5.

2 Background and Related Work

Blockchain’s ability to process transactions in a trust-less environment, apart
from trading its official cryptocurrency, the Ether, presents the most promi-
nent framework for the execution of “Smart Contracts” [12]. Smart Contracts
are computer programs, formalizing digital agreements, automatically enforced
to execute any predefined conditions using the consensus mechanism of the
Blockchain, without relying on a trusted authority. They empower developers
to create diverse applications in a Turing Complete Programming Language, ex-
ecuted on the decentralized Blockchain platform, enabling the execution of any
contractual agreement and enforcing its performance.

Moreover, Smart Contracts allow companies or entrepreneurs to create their
own proprietary tokens on top of the Blockchain protocol [13]. These tokens are
often pre-mined and sold to the public through Initial Coin Offerings (ICO) in
exchange of Ether, other crypto-currencies, or Fiat Money. The issuance and
auctioning of dedicated tokens assist the venture to crowd-fund their project’s
development, and in return, the ICO tokens grant contributors with a redeemable
for products or services the issuer commits to supply thereafter, as well as the
opportunity to gain from their possible value increase due to the project’s suc-
cess. The most widely used token standard is Ethereums ERC20 (representing
Ethereum Request for Comment), issued in 2015. The protocol defines techni-
cal specifications giving developers the ability to program how new tokens will
function within the Ethereum ecosystem.

This brand new market of ERC20 compliant tokens is fundamental to ana-
lyze, as it is becoming increasingly relevant to the financial world. Issuing tokens
on top of the Blockchain system by startups and other private sector companies
is becoming a ubiquitous phenomenon, inducing the trade of these crypto-coins
to an exponential degree. Since 2017, Blockchain startups have raised over 7 Bil-
lion dollars through ICOs. Among the largest offerings, Tezos raised $232M for
developing a smart contracts and decentralized governance platform; Filecoin
raised $205M to deploy a decentralized file storage network; EOS raised over
$185M to fund scalable smart contracts platform and Bancor, who managed to
raise $153M for deploying a Blockchain-based prediction market.

Apart from being formed by countless stake-holders and numerous tokens, the
ERC20 transactional data also presents full data of prices, volumes and holders
distribution. This, alongside with daily transactions of anonymised individuals
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is otherwise scarce and hard to obtain due to confidentiality and privacy control,
hence providing a rare opportunity to analyze and model financial behavior in
an evolving market over a long period of time.

In the past two decades, network science has exceedingly contributed to mul-
tiple and diverse scientific disciplines. Applying network analysis and graph the-
ory have assisted in revealing the structure and dynamics of complex systems
by representing them as networks, including social networks [14–16], computer
communication networks [17], biological systems [18], transportation [19, 20],
IOT [21], emergency detection [22] and financial trading systems [23–25].

Most of the research conducted in the Blockchain world, was concentrated
in Bitcoin, spreading from theoretical foundations [26], security and fraud [27,
28] to some comprehensive research in network analysis [29–31]. The world of
Smart contracts has recently inspired research in aspects of design patterns,
applications and security [32–35], policy towards ICOs has also been studied
[13]. However, the comprehensive analysis of ERC20 tokens, with emphasis on
the investigation of the transaction graph built from their related activity on the
Blockchain, is still lacking. In this paper we aim to examine how this prominent
field can enhance the understanding of the underlying structure of the ERC20
tokens trading data.

3 Methodology

3.1 Data

In order to preserve anonymity in the Ethereum Blockchain, personal informa-
tion is omitted from all transactions. A User, represented by their wallet, can
participate in the economy system through an address, which is attained by ap-
plying Keccak-256 hash function on his public key. The Ethereum Blockchain
enables users to send transactions in order to either send Ether to other wal-
lets, create new Smart Contracts or invoke any of their functions. Since Smart
Contracts are scripts residing on the Blockchain as well, they are also assigned
a unique address. A Smart Contract is called by sending a transaction to its ad-
dress, which triggers its independent and automatic execution, in a prescribed
manner on every node in the network, according to the data that was included
in the triggering transaction.

Smart Contracts representing ERC20 tokens comply with a protocol defining
the manner in which the token is transferred between wallets and the form
in which data within the token is accessed. Among these requirements, is the
demand to implement a transfer method, which will be used for transferring the
relevant token from one wallet to another. Therefore, each transfer of an ERC20
token will be manifested by a wallet sending a transaction to the relevant Smart
Contract. The transaction will encompass a call to the transfer method in its
data section, containing the amount being transferred and its recipient wallet.
Each such token transfer results in altering the ’token’s balance’, which is kept
and updated in its corresponding Smart Contract’s storage.
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We obtain the ERC20 transactions basing on the further requirement of
the ERC20 protocol, demanding that each call to the transfer method will be
followed by sending a Transfer event and updating the event’s logs with all
relevant information regarding the token transfer. We therefore call an Ethereum
full node’s JSON API and fetch all logs matching to the Transfer event structure
[36]. Parsing these logs result in the following fields per transaction: Contract
Address - standing for the address of the Smart Contract defining the transferred
token, Value - specifying the amount of the token being transferred, Sender and
Receiver addresses, being the wallet addresses of the token’s seller and buyer,
correspondingly.

We have retrieved all ERC20 tokens transactions spreading between February
2016 and February 2018, resulting in 30, 347, 248 transactions and 18, 517 token
address. Due to the restriction on changing and tempering Smart Contracts, any
modification made to a token’s designated Smart Contract involves a definite
change in it’s associated Contract Address. As a result, a token can change
addresses throughout it’s lifespan, though for any point in time, it will only be
assigned to a single relevant Contract Address. Therefore, the above mentioned
amount of unique contract addresses serves merely as an upper bound to the
amount of unique tokens. Since we do not restrict ourselves to a specific type
of token, but observe the network as a whole trading system, this non-unique
identification of tokens doesn’t affect our analysis of the network.

The dataset of ERC20 tokens transactions is extremely diverse and wide-
ranging, where not only any ERC20 token might correspond to multiple con-
tract addresses, and therefore being considered as various different tokens by
our analysis, but also the characteristics of the different tokens are extremely
varied. For instance, the tokens differ in their age, their economic value, activ-
ity volume and number of token holders, some merely serve as test-runs, others
aren’t tradable in exchanges yet, and some, according to popular literature, are
frauds, all residing next to actual real-world valuable tokens.

3.2 Graph Analysis

In order to perceive the network’s structure and assess the connectivity of its
nodes, one should examine the network’s degree distribution, considering both
in-degree and out-degree, indicating the number of incoming and outgoing con-
nections, correspondingly. The degree distribution P (k) signifies the probability
that a randomly selected node has precisely the degree k.

In random networks of the type studied by Erdös and Rényi [37], where
each edge is present or absent with equal probability, the nodes’ degrees follow
a Poisson distribution. The degree obtained by most nodes is approximately
the average degree k̄ of the network. These properties are also manifested in
dynamic networks [38]. In contrast to random networks, the nodes’ degrees of
social networks (such as the Internet or citation networks) often follow a power
law distribution [39]:

P (k) = k−α (1)
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The power law degree distribution indicates that there is a non-negligible
number of extremely connected nodes even though the majority of nodes have
small number of connections. Therefore the degree distribution has a long right
tail of values that are far above the average degree. Power law distributions
can be found in many real networks, Newman [16] summarized several of them,
including word frequency, citations, telephone calls, web hits, or the wealth of
the richest people.

4 Results

As discussed, we study an extremely diverse and wide-ranging dataset. In order
to present a first glimpse on the diversity of ERC20 tokens transactional data,
we explore the distribution of token popularity, in terms of buyers and sellers
amount.

Definition 1. Let CT be an ERC20 token. The token’s Buying Popularity dur-
ing timespan t, denoted by BPt, is defined as the number of unique wallets which
bought the token during the examined time:

BPt(CT ) := |{wv‖ wallet wv bought CT during time t}| (2)

Correspondingly, Selling Popularity during time t, denoted by SPt, is defined as
the amount of unique wallets who sold token CT during this time:

SPt(CT ) := |{wv‖ wallet wv sold CT during time t}| (3)

As Fig. 1 reflects, ERC20 tokens’ both Buying and Selling Popularities follow
a power-law distribution, thereby expressing the diversity of token holders along
a 2 years period, between February 2016 and February 2018. Particularly, it can
be seen that most tokens are traded by an extremely small amount of users and
on the other hand, a few popular tokens exist, traded by a very large group of
users during the examined timespan.

We further aim to examine whether the ERC20 network satisfies the known
characteristics of other real-world networks, first and foremost examining its de-
gree distribution. We therefore construct the following directed graph,GFT (V,E),
standing for ERC20 Full Transactions Graph, including all transactions in the
timespan between February 2016 and February 2018. The resulting graph con-
sists of 6, 890, 237 vertices and 17, 392, 610 edges.

The set of vertices V consists of all ERC20 trading wallets in this period,
where any vertex u represents a trading wallet wu. Out-going edges depict trans-
actions in which wallet wu sold any type of ERC20 token to other wallets, and
in-coming edges to u are formed as result of transactions in which wu bought
any ERC20 token from others. Formally, E ⊆ V × V s.t.:

E := {(u, v)‖ wallet wu sold any ERC20 token to wv} (4)

Out-degree of vertex u represents the number of unique wallets buying tokens
from wu and its in-degree depicts the number of unique wallets selling tokens to
it.
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Fig. 1: Histogram of the Buying Popularity BPt (upper panel) and Selling Popular-
ity SPt (lower panel) of all ERC20 Crypto-coins [see definition 1], for t being a two
years period lapsing from February 2016 to February 2018. Depicting the probability
a coin would have certain popularity among buyers and sellers correspondingly, both
demonstrating a power-law distribution.

Surprisingly, despite the great variance between the traded tokens in the
network, we discovered that the degree distribution depicts a strong power-law
pattern, as presented in Fig. 2. Hence the ERC20 Full Transactions Graph,
GFT , displays similar connectedness structure to other real-world networks, such
as [14–16], presenting a non-negligible number of highly connected nodes even
though the majority of nodes have small number of connections, both in buy-
ing and selling transactions. We have additionally analyzed ERC20 transaction
graphs based on varying length periods between 3 days to 3 months, and val-
idated our findings across 20 different points in time. We have observed that
in all cases the power-law degree distribution is preserved and presents roughly
similar γ values. 4

Elaborating on this last observation, which is uncovered for the first time
in this work, it can be seen that the economic activity on the ERC20 network
— both outgoing, incoming, and reciprocal — converges to a heavy-tail dis-

4 We omit these results from the current version, due to space limitations, and they
will appear in a future, extended version.



8 S. Somin, G. Gordon and Y. Altshuler

100 101 102 103 104 105

In-degree

10 11

10 9

10 7

10 5

10 3

10 1

De
ns

ity

In-degree distribution
power-law, = 2.281

100 101 102 103 104 105 106

Out-degree

10 11

10 9

10 7

10 5

10 3

10 1

De
ns

ity

Out-degree distribution
power-law, = 1.935

Fig. 2: Analysis of Blockchain network dynamics for a 2 years period from February 2016
to February 2018. The networks nodes represent ERC20 wallets and edges are formed by
ERC20 buy-sell transactions. Outgoing degree of a node reflects the number of unique
wallets receiving funds from that node, regardless of the token being transferred, and
vice-versa for incoming degree. Both outgoing and incoming degrees present a power-
law distribution, similarly to what was demonstrated in analysis of mobile phone,
citation data and many other real-world networks [16]

tribution. This discovery has several important (and partially counterintuitive)
consequences:

Decentralization The first derivative from the power law phenomena demon-
strated in this work, is the strengthening of the ERC20 environment’s de-
centralization property. Decentralization in this context is manifested by
the existence of a large number of medium sized hubs, taking part in the
network’s activity, constituting a network that is not governed by a single
major player, both in the sense of trading wallets as well as in traded to-
kens. Decentralization, forming a key feature of the Blockchain technology,
and for some – its main “claim to fame”, is both celebrated and questioned.
By clearly showing the emergence of a heavy tail distribution within the
trading behavior of its users, we can for the first time, provide a concrete
data-driven proof for the inherent decentralization of ERC20 tokens, which
remains stable across various time-periods, and length of analysis windows.
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Robustness An immediate implication of the decentralization of the ERC20
tokens network, is also its robustness. Several works have used percolation
theory [40] to demonstrate that such network structures are often less subject
to manipulations using small correlated groups [41], making it easier for the
majority of the crowd to maintain relative freedom.

Diversity Subsequently, it also facilitates the creation of new emerging to-
kens, as it increases the probability that they would be adopted by a non-
negligible-in-size group of “first-adopters”. This is specifically important for
an environment that aims to provide opportunities for the fast creation and
adoption of new applications.

Maturity Several critics have referred to Ethereum, as well as to the ERC20
tokens in general, as an immature economic structure, that is unstable and
certainly not well representing a “normal” human economy. The stable and
multi-faceted power-law patterns demonstrated in our analysis imply that
these criticisms are, to the very list, partially unjustified. The convergence
of tokens distributions, as well as buying and selling activities is a typi-
cal characteristic of “natural human behavior” [4] and specifically mature
economies [42, 43]. Furthermore, as demonstrated in works such as [44] it is
also an efficient substance for the natural evolution of sub-communities.

Opportunities for future research A strong embedding of power-law char-
acteristics implies the likely usability of the multitude of known techniques
utilizing this feature for various purposes such as anomalies detection [22],
marketing optimization [45, 46] and cybersecurity [47]

5 Concluding Remarks and Future Work

In this paper, we have demonstrated for the first time that the ERC20 tokens
transactional data displays several properties known to be associated with net-
works that are comprised of human interactions, and social networks specifically.
This occurs despite the fact that the Blockchain protocol enables the creation
of an unlimited number of “tokens”, causing diverse sub-domains to reside to-
gether over the same protocol, and regardless of an unlimited amount of wallets,
resulting in different identities controlled by a single individual.

Specifically, we have modeled the transactions as a network that is comprised
of wallets, connected through transactions, and found that the degree distribu-
tion of nodes in the network presents a power-law pattern. In addition, we have
shown that tokens popularity among buyers and sellers also follows a power-law
model. These preliminary results indicate that (somewhat surprisingly) despite
its diversity, ERC20 data presents a social behavior. This leads us to explore
whether other aspects of network theory can emerge from this data. Such fields
include short path lengths and clustering coefficient analysis [48], centrality mea-
sures [49], connected components behavior [5] and community structure study
[50]. We have already been able to demonstrate some of these phenomena using
the ERC20 data as well, however they were not included in this work due to
space considerations.
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