Scalable Total Synthesis of (-)-Vinigrol

Xuerong Yu, Lianghong Xiao, Zechun Wang, Tuoping Luo, JACS 2019, 141, 3440–3443.

What is the name of the starting material?

Step 3: Propose a mechanism for the ring contraction that takes place.

Step 5 triggeres another rearrangement. What is the name of it?

Step 7: Draw a transition state of this transformation and rationalize why the Me-(R)-stereoisomer could be the major prodcut.

Which name reaction is associated with step 10? Provide a mechanism for it.

12) LDA, **X**

then DBU,
$$40^{\circ}$$
C

13) DBU, 100° C

14) o-DCB, MW, 200° C

Hint: Step 13 is the inversion of a stereocenter to the thermodynamically more stable product.

Provide a mechanism for step 14.

15) ¹O₂, 0°C 16) H₂, Pd/C 17) Burgess reagent (1.0 eq) 18) DIBAL-H 19) ¹O₂, *then* PMe₃

What is the name reaction that occurs in step 19?