IMPORTANCE Pathologic complete response (pCR) is a known prognostic biomarker for long-term outcomes. The I-SPY2 trial evaluated if the strength of this clinical association persists in the context of a phase 2 neoadjuvant platform trial.

OBJECTIVE To evaluate the association of pCR with event-free survival (EFS) and pCR with distant recurrence-free survival (DRFS) in subpopulations of women with high-risk operable breast cancer treated with standard therapy or one of several novel agents.

DESIGN, SETTING, AND PARTICIPANTS Multicenter platform trial of women with operable clinical stage 2 or 3 breast cancer with no prior surgery or systemic therapy for breast cancer; primary tumors were 2.5 cm or larger. Women with tumors that were ERBB2 negative/hormone receptor (HR) positive with low 70-gene assay score were excluded. Participants were adaptively randomized to one of several different investigational regimens or control therapy within molecular subtypes from March 2010 through 2016. The analysis included participants with follow-up data available as of February 26, 2019.

INTERVENTIONS Standard-of-care neoadjuvant therapy consisting of taxane treatment with or without (as control) one of several investigational agents or combinations followed by doxorubicin and cyclophosphamide.

MAIN OUTCOMES AND MEASURES Pathologic complete response and 3-year EFS and DRFS.

RESULTS Of the 950 participants (median [range] age, 49 [23-77] years), 330 (34.7%) achieved pCR. Three-year EFS and DRFS for patients who achieved pCR were both 95%. Hazard ratios for pCR vs non-pCR were 0.19 for EFS (95% CI, 0.12-0.31) and 0.21 for DRFS (95% CI, 0.13-0.34) and were similar across molecular subtypes, varying from 0.14 to 0.18 for EFS and 0.10 to 0.20 for DRFS.

CONCLUSIONS AND RELEVANCE The 3-year outcomes from the I-SPY2 trial show that, regardless of subtype and/or treatment regimen, including 9 novel therapeutic combinations, achieving pCR after neoadjuvant therapy implies approximately an 80% reduction in recurrence rate. The goal of the I-SPY2 trial is to rapidly identify investigational therapies that may improve pCR when validated in a phase 3 confirmatory trial. Whether pCR is a validated surrogate in the sense that a therapy that improves pCR rate can be assumed to also improve long-term outcome requires further study.

TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01042379
neoadjuvant therapy and adjuvant systemic therapy are equally effective in improving breast cancer survival. However, neoadjuvant therapy improves rates of breast-conserving surgery owing to tumor downstaging1,2 and allows assessment of response. The Collaborative Trials in Neoadjuvant Breast Cancer (CTNeoBC) working group evaluated the latter by conducting a pooled patient-level meta-analysis of nearly 12,000 patients from 12 randomized trials, largely with various regimens of standard chemotherapy, to assess the relationship between pathologic complete response (pCR) rates, event-free survival (EFS), and overall survival.3 Overall, pCR was found to have long-term benefit for patients (EFS hazard ratio, 0.48), with the strongest association observed for more aggressive breast cancer subtypes, such as triple-negative breast cancer (hormone receptor [HR] negative, ERBB2 [formerly HER2] negative disease) (EFS hazard ratio, 0.24), and ERBB2-positive disease (EFS hazard ratio, 0.39). Based on these data, the US Food and Drug Administration and the European Medicines Agency issued guidance for the use of pCR as a primary end point in support of accelerated drug approval.4,5 Given the number of promising new agents, this provided the opportunity for new trial designs to rapidly identify drugs with the greatest activity.

I-SPY2 is a neoadjuvant, adaptively randomized, multicenter phase 2 platform trial evaluating investigational therapies in combination with standard-of-care chemotherapy for high-risk breast cancer,6-8 with pCR as the primary end point. The trial’s goals are to match investigational therapies with responsive subtypes. Using a multiamarm design and a master protocol, I-SPY2 has continuously enrolled patients since 2010 and has completed the evaluation of 15 investigational therapies. Here, we report the relationship between pCR status and 3-year outcomes (EFS and DRFS) for the first 950 patients randomized across 10 therapies (including control).

Methods

Study Design

I-SPY2 (NCT01042379) is a multicenter platform trial (protocol in Supplement 1; eFigure 1 in Supplement 2)7-9 that used adaptive randomization across 8 subtypes defined by HR expression, ERBB2 status, and genomic risk of recurrence per the 70-gene assay (MammaPrint, Agenda) as previously described.9,10 Twenty percent of patients in each of the 8 subtypes were randomized to control therapy.

The primary end point of I-SPY2 was pCR, defined as the absence of invasive disease in breast and axillary nodes (ypT0/is, ypNO) at time of surgery. Patients who progressed, withdrew consent, or received nonprotocol therapy before surgery are adjudicated as non-pCR. All patients were observed for long-term outcome, reporting at least annually. Secondary end points include residual cancer burden,9 EFS, and DRFS.

The I-SPY2 trial receives institutional review board approval for the master protocol for each site. As new drugs are added to the trial, each site receives approval for the amendment, and amendment approval is required for continued enrollment on the trial. All participating sites received local institutional review board approval. The I-SPY2 Data and Safety Monitoring Board met monthly to review patient safety and study progress.

Participants

Eligible patients were 18 years and older and have clinical stage 2 or 3 breast cancer with no prior surgery or systemic therapy for breast cancer. Primary tumors must be 2.5 cm or greater as measured by imaging or physical examination with patient Eastern Cooperative Oncology Group performance status 0 or 1.12 Tumors that are ERBB2 negative/HR positive with low 70-gene assay score were excluded, as there is no benefit of cytotoxic chemotherapy in this subpopulation.10 All patients provided written informed consent prior to screening for the trial, and a second treatment consent was obtained after randomization to open-label treatment (before treatment was initiated).

Treatment Arms

Control therapy was 12 weekly cycles of paclitaxel (80 mg/m²) followed by 4 cycles of doxorubicin (60 mg/m²) and cyclophosphamide (600 mg/m²). Control therapy for ERBB2-positive tumors also included weekly trastuzumab (4 mg/kg loading dose followed by 2 mg/kg during weeks 2-12) in combination with paclitaxel; pertuzumab treatment was an experimental arm. When pertuzumab received accelerated approval in September 2013, randomization to paclitaxel and trastuzumab was stopped.13

From trial initiation in March 2010 until November 2016, I-SPY2 completed evaluation of 10 experimental agents or combinations: neratinib,7 veliparib plus carboplatin,8 trebananib (AMG386),14 ganitumab,15 MK2206,16 pertuzumab,17 trastuzumab emtansine plus pertuzumab,18 ganetespib,19 pexidartinib (PLX3397),20 and pembrolizumab.21 Each arm included paclitaxel except for the trastuzumab emtansine plus pertuzumab arm. Pexidartinib was discontinued for safety concerns,20 having accrued only 9 patients, and was therefore excluded from this analysis. Six of the 9 experimental therapies “graduated” as described. The current analysis includes participants randomized to any of these 10 therapies (including control) who had follow-up information available as of February 26, 2019.

Key Points

Question Is there an association between pathologic complete response (pCR) and survival end points in neoadjuvant treatment of early breast cancer with various novel therapeutics?

Findings In this follow-up analysis of a randomized clinical trial of 950 patients with breast cancer, a strong individual-level association was found between pCR and event-free survival and distant recurrence-free survival. Excellent outcomes were associated with pCR for all standard subtypes of breast cancer, including pCR owing to experimental regimens.

Meaning The findings of this study suggest that pCR may be a robust prognostic biomarker for excellent long-term outcomes at the individual patient level for patients with early, high-risk breast cancer.
Pathology
Locations of lesions were marked with clips before therapy to ensure identification of the tumor bed at surgery. Pathologic assessment followed the residual cancer burden method, where residual cancer burden of 0 is pCR. This is consistent with the standardized procedures of the College of American Pathologists as described in section IV.E of the US Food and Drug Administration guidance.

Statistical Analysis
Participants were grouped according to pCR status. Baseline characteristics were compared using a χ² test for categorical variables and Wilcoxon rank sum test for continuous variables. Patients’ EFS was assessed as time from treatment consent to any locoregional or distant recurrence or death from any cause; DRFS was time to distant recurrence or death from any cause. Patients without events were censored at last follow-up.

Cox proportional hazard modeling, with significance assessment using the score (log rank) test, was used to estimate the hazard ratio for pCR vs non-pCR and its 95% CI. All P values are 2-sided, and significance level is P < .05. Kaplan-Meier estimates of 3-year EFS and DRFS for the 2 groups are presented. Analyses were performed over the entire population and within HR/ERBB2 subtypes. Bayesian modeling of EFS, stratified for subtype, was used to estimate the hazard ratios for pCR vs non-pCR within individual treatment arms (see eMethods in Supplement 2). Statistical analyses were performed using Intel Fortran Compiler, version 19.0.2 (Intel Corporation).

Results
Patients
From March 3, 2010, to November 5, 2016, a total of 1896 patients were screened for eligibility for the trial, and 1123 were randomized; 773 patients did not proceed to randomization for various reasons (Figure 1). A total of 1038 patients received treatment on 1 of 9 arms in this analysis. Of these, 950 had follow-up data available prior to the data cutoff date of February 26, 2019. No statistical differences were observed in age or race among patients who achieved pCR (median [range] age, 49 [25-73] years) vs those who did not (median [range] age, 49 [23-77] years) (eTable 1 in Supplement 2), nor were there significant differences between the 2 groups in nodal status, time from treatment consent to surgery, or length of follow-up.

Rates of pCR
Of the 950 patients, 330 (34.7%) achieved pCR. Rates of pCR (Table) were lowest for HR-positive, ERBB2-negative tumors (17.4% [63 of 361]), increasing approximately additively for ERBB2 positivity and HR negativity, up to 68% (61 of 90) for HR-negative, ERBB2-negative tumors. For patients receiving control therapy, pCR rates were 19.3% for the entire population (39 of 202), varying by subtype; 15% (14 of 92) for HR-positive, ERBB2-negative tumors; 21% (17 of 80) in HR-negative, ERBB2-negative tumors; 17% (3 of 18) for HR-positive, ERBB2-positive tumors; and 42% (5 of 12) in HR-negative, ERBB2-positive tumors. Rates of pCR were higher for those in the investigational arms compared with those in the control arms.

Association of pCR With EFS and DRFS
There were 1265 woman-years of follow-up for the 330 patients who achieved pCR, with 19 events reported (0.0150/y), and 2125 woman-years of follow-up for the 620 patients not achieving pCR, with 169 events reported (0.0795/y). Three-year EFS was 95% for patients achieving pCR compared with 78% for non-pCR, with a hazard ratio of 0.19 (95% CI, 0.12-0.31; Figure 2A and Table). Similarly, 3-year DRFS was 95% for those with pCR vs 81% for those without, with a hazard ratio of 0.21 (95% CI, 0.13-0.34; Figure 2B). Patients who achieved pCR showed a 3-year EFS of 93% to 97% regardless of subtype (Figure 2C). There were differences by subtype for those not achieving pCR, with 3-year EFS ranging from 57% for HR-negative, ERBB2-negative tumors to 89% for HR-positive, ERBB2-positive tumors (Figure 2D).

Hazard ratios for EFS were consistent across all subtypes of breast cancer, ranging from 0.14 (95% CI, 0.03-0.55) in HR-positive, ERBB2-negative tumors to 0.18 (95% CI, 0.05-0.41) in HR-positive, ERBB2-positive tumors regardless of the treatment arm. Hazard ratios for DRFS varied similarly. Kaplan-Meier plots of EFS and DRFS by subtype are provided in eFigures 2 and 3 in Supplement 2. Bayesian modeled subtype-adjusted EFS hazard ratios by pCR vs non-pCR within...
Table. Pathologic Complete Response (pCR) Rates and Hazard Ratios of Event-Free Survival (EFS) and Distant Recurrence-Free Survival (DRFS) for pCR vs Not pCR by Molecular Subtype

<table>
<thead>
<tr>
<th>Subtype</th>
<th>No.</th>
<th>pCR rate, % (95% CI)</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EFS</td>
<td>DRFS</td>
</tr>
<tr>
<td>HR+ ERBB2−</td>
<td>361</td>
<td>17 (14-22)</td>
<td>0.14 (0.03-0.55)</td>
</tr>
<tr>
<td>HR+ ERBB2+</td>
<td>173</td>
<td>40 (33-48)</td>
<td>0.15 (0.03-0.63)</td>
</tr>
<tr>
<td>HR− ERBB2−</td>
<td>326</td>
<td>42 (36-47)</td>
<td>0.18 (0.09-0.34)</td>
</tr>
<tr>
<td>HR− ERBB2+</td>
<td>90</td>
<td>68 (57-77)</td>
<td>0.14 (0.05-0.41)</td>
</tr>
<tr>
<td>All</td>
<td>950</td>
<td>35 (32-38)</td>
<td>0.19 (0.12-0.31)</td>
</tr>
</tbody>
</table>

Abbreviation: HR, hormone receptor.
*a The observation that every hazard ratio for molecular subtype is smaller than the overall hazard ratio is not a typographic error. It is an example of the Simpson paradox, which was observed as well in the I-SPY trial.23 This observation demonstrates the importance of considering molecular subtype when evaluating the association of pCR with EFS and DRFS.

b Based on binomial exact (Clopper-Pearson) CI method.

Discussion

Since the start of enrollment in 2010, the rate of pCR varied across the molecular subtypes of breast cancer in the I-SPY2 trial. Regardless of subtype or treatment regimen, a strong and consistent association between individual pCR and EFS/DRFS with an overall hazard ratio of 0.19 (95% CI, 0.12-0.31) with median follow-up of 3.8 years was observed. After 3 years of follow-up, a clear separation of the curves suggests that these results will persist over time, but this awaits further analysis and follow-up.

Our results are consistent with the findings of the CTNeoBC (Collaborative Trials in Neoadjuvant Breast Cancer) pooled analysis. We did observe smaller EFS hazard ratios with a somewhat shorter follow-up period, a difference that may be explained by differences in patient populations. The I-SPY2 trial does not enroll patients with tumors smaller than 2.5 cm or HR-positive, ERBB2-negative, 70-gene-assay (MammaPrint) low-risk tumors. Only a small number of patients with HR-negative or ERBB2-positive (n = 17) genomic low-risk tumors were enrolled. The I-SPY2 trial focused on a group with high risk of early recurrence, as demonstrated in 2 validation series.24,25 The MINDACT (Microarray in Node-negative Disease May Avoid Chemotherapy) trial, which evaluated the 70-gene assay to predict benefit of adjuvant therapy, demonstrated that women with clinically-high-risk but genomic low-risk tumors did not have risk for early recurrence, nor did they benefit from chemotherapy.10 Inclusion of HR-positive/70-gene-assay low-risk patients as in CTNeoBC could therefore dilute the effect of pCR on EFS, leading to a higher hazard ratio.

Whether pCR is a validated surrogate in the sense that a therapy that improves pCR rate can be assumed to also improve long-term outcome requires further study. The I-SPY2 trial is not powered or intended to evaluate whether an increase in pCR rate translates to an improvement in EFS for individual experimental therapies relative to control. However, small improvements in pCR, as seen with the use of bevacizumab in the ARTemis trial,26 would not rise to the level of a graduation threshold in the I-SPY trial, which is designed to identify agents with a clinically important effect of the rates of pCR. Instead, I-SPY2 is designed to identify large pCR improvements and provide the rationale for larger confirmatory trials in appropriate subsets of patients, as has been validated in the KEYNOTE-522 trial27 and the BrighTNess trial.28 These showed similar pCR rates for chemotherapy with investigational agents (pembrolizumab and veliparib/carboplatin, respectively) as reported here, with an early indication of improved EFS. In I-SPY2, pCR rates were similar or higher for all of the experimental agents compared with the control regimen of paclitaxel plus doxorubicin and cyclophosphamide. Further confirmatory trials, along the lines of KEYNOTE-522, can use I-SPY2 results to develop new standard-of-care regimens.

We and many others have now shown that, for individuals, pCR achieved after neoadjuvant therapy is associated with excellent EFS and DRFS. Neoadjuvant therapy allows early assessment of a clinically relevant response end point (pCR) for patients, identifying individuals who do well on their initial therapy alone. As such, an immediate estimate of benefit is available that cannot be determined when adjuvant chemotherapy is given after surgery. Given the number of promising therapies for breast cancer and the need to determine efficacy for specific subgroups of patients, neoadjuvant therapy

individual arms are provided in eFigure 4 in Supplement 2, with median (range) estimates ranging from 0.05 (0.003-0.24) to 0.45 (0.14-1.10).

Postsurgical Therapy

All patients were recommended to receive appropriate postsurgical therapy for their disease subtype, administered per the discretion of the treating physician. Of the 838 patients for whom data were available, a higher proportion of non-pCR patients received additional adjuvant therapies when compared with those who achieved pCR (eTable 2 in Supplement 2). Thirty-six of 540 patients (6.7%) not achieving pCR, only 2 of 56 (4%) received additional systemic therapy from 2010 to 2012, increasing to 5 of 68 (7%) during 2013 to 2014 and to 11 of 43 (25%) during 2015 to 2016.
provides an opportunity to understand a new therapy’s mechanistic antitumor effect and correlate with antitumor activity measured by imaging and pathologic response. The contribution of the I-SPY program is that the association between pCR and EFS appears to hold true for individuals who received novel therapeutic combinations.16 Follow-up will continue in I-SPY2 to assess the longer-term association with pCR and overall survival.

In a patient-level meta-analysis by Spring et al29 that included more than 27,000 women treated with the neoadjuvant approach, again we see the very strong correlation of pCR with EFS. Importantly, for the almost 8000 women who had additional adjuvant therapy following neoadjuvant therapy, no benefit of additional therapy was observed in patients who achieved pCR. While it is not yet known if additional systemic therapy can be discontinued after pCR in all subtypes, especially in HR-positive, ERBB2-negative and HR-negative, ERBB2-positive tumors, trials to test this hypothesis, such as the COMPASS trial (NCT04266249) and the DeCrescendo trial (in planning through the Breast International Group), are under way. These data provide support for the de-escalation of therapy with the possibility to avoid unnecessary toxic effects.
Continuing the same regimen after non-pCR may not improve long-term outcomes. The KATHERINE trial enrolled patients with residual disease after neoadjuvant ERBB2-based therapy. Use of ado-trastuzumab emtansine, instead of continued trastuzumab, resulted in improved 3-year invasive and distant disease-free survival with a hazard ratio of 0.50. This argues strongly that lack of pCR requires a change in therapy, as continuing the same regimen in the neo-adjuvant setting was inferior. The CREATE-X trial, which randomized patients to capecitabine vs no additional therapy, further the argument that the poor prognostic implications of non-pCR can be addressed by adding additional new therapy in triple-negative breast cancer.

Limitations

The goal of the I-SPY2 trial was to rapidly identify active agents and combinations to increase the chance of achieving pCR. The association of pCR with EFS and DRFS is based on a 3-year follow-up; longer follow-up will yield additional information about the strength of this association for pCR. The association between pCR and overall survival will also require additional long-term follow-up. Furthermore, larger confirmatory neoadjuvant trials will be able to generate sufficient data to establish whether pCR can be considered a validated surrogate of EFS.

Conclusions

The strength of the I-SPY2 study is that it shows that pCR, regardless of high-risk subtype and type of treatment and across 9 investigational targeted biologics, is associated with a much better outcome for individuals who achieve pCR. The goal of the I-SPY2 trial was to rapidly identify active agents and combinations to increase the chance of achieving pCR. Larger confirmatory neoadjuvant trials will be able to generate sufficient data to establish whether pCR can be considered a validated surrogate of EFS. Perhaps more importantly, these data should drive and inspire us to think about how to maximize the chance that each individual can achieve pCR. These data provide a clear experimental rationale for serial adjustments to systemic therapy prior to surgery with therapies directed at specific subtypes.
California, San Francisco (Hyfton); Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, US (Gemin Group, Ann Arbor, Michigan (Perlmutter); Quantum Leap Healthcare, San Francisco, California (Wilson, A. L. Asare, S. M. Asare); Berry Consultants, LLC, Austin, Texas (Buxton, Paoloni, Clennell, Sanil, S. M. Berry, D. A. Berry).

Author Contributions: Drs Esserman and You had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: DeMichele, Isaacs, Symmans, Albain, Magliocco, Ocalo, Sahoo, Elia, Khan, Park, Olopade, Leyland-Jones, Tripathy, Rugo, Helsten, van’t Veer, Perlmutter, Buxton, Paoloni, Clennell, S. Berry, Esserman, D. Berry.

Drafting of the manuscript: Yee, DeMichele, Yau, Symmans, Ocalo, Tawfik, Olopade, Wilson, Peterson, Steeg, Matthews, S. Asare, Esserman, D. Berry.

Statistical analysis: Yau, Tawfik, Leyland-Jones, A. Asare, Sanil, S. Berry, Esserman, D. Berry.

Obtained funding: Chui, Buxton, Paoloni.

Study supervision: DeMichele, Magliocco, Chien, Stringer-Reaor, Wallace, Puzata, Ellis, Lang, Han, Nanda, Chui, Schwab, Helsten, Buxton, Paoloni, Hirst, D. Berry.

Conflict of Interest Disclosures: Dr Yee reported receiving grants from National Institutes of Health (NIH), NIH/National Cancer Institute (NCI), and Quantum Leap Healthcare Collaborative during the conduct of the study; and grants; from Boehringer Ingelheim and Amgen, personal fees for serving on advisory boards from AstraZeneca, Lilly, Daiichi, Genentech, Merck, Pfizer, and for personal fees from Aduro Biotherapeutics, Alnylam, Clovis, G1 Therapeutics, MacroGenics, Puma Biotechnology, Seattle Genetics, and Syndax Pharmaceuticals outside the submitted work.

Dr Khan reported receiving grants from Novartis outside the submitted work. Dr Edmiston reported receiving grants from Sawai Foundation during the conduct of the study. Dr Chui reported being a full-time employee of Genentech and owning Roche stock. Dr Park reported receiving personal fees from Genentech and Pfizer outside the submitted work. Dr Liu reported receiving grants from Eisai, Novartis, Seattle Genetics, and Tesaro; grants and nonfinancial support (travel costs) from Genentech, Grail, and Merck; and nonfinancial support (travel costs) from AstraZeneca, Genentech, Merck, and Pfizer; and personal fees from Aduro Biotherapeutics, Atheneum, Clovis, G1 Therapeutics, MacroGenics, Puma Biotechnology, Seattle Genetics, and Syndax Pharmaceuticals outside the submitted work.

Dr Rugo reported receiving grants from Novartis outside the submitted work. Dr Edmiston reported receiving grants from Sawai Foundation during the conduct of the study. Dr Chui reported being a full-time employee of Genentech and owning Roche stock. Dr Park reported receiving personal fees from Genentech and Pfizer outside the submitted work. Dr Liu reported receiving grants from Eisai, Novartis, Seattle Genetics, and Tesaro; grants and nonfinancial support (travel costs) from Genentech, Grail, and Merck; and nonfinancial support (travel costs) from AstraZeneca, Genentech, Merck, and Pfizer; and personal fees from Aduro Biotherapeutics, Alnylam, Clovis, G1 Therapeutics, MacroGenics, Puma Biotechnology, Seattle Genetics, and Syndax Pharmaceuticals outside the submitted work.

Dr Yee reported receiving grants from Seattle Genetics and personal fees from Puma Biotechnology, Genentech/Roche, and Pfizer during the conduct of the study; and receiving personal fees from Genomic Health and Novartis outside the submitted work. Dr B. Chui reported receiving grants and nonfinancial support (supply of drugs) from Foundation for the NIH (FNIH) and Quantum Leap Healthcare Collaborative during the conduct of the study. Dr Magliocco reported receiving grants from Roche and Genentech and receiving personal fees from and being an employee and shareholder of Protean BioDiagnostics outside the submitted work. Dr Chien reported receiving institutional support from Quantum Leap Healthcare Collaborative during the conduct of the study and receiving institutional support from Merck, Seattle Genetics, Aagen, and Puma Biotechnology outside the submitted work. Dr Stringer-Reaor reported receiving grants from Susan G Komen and V Foundation and personal fees from Eli Lilly and Company. Immunogenics, and BIO outside the submitted work. Dr Puzata reported receiving grants and personal fees from Foundation for the NIH, AstraZeneca, Seattle Genetics, and Merck during the conduct of the study; and grants and personal fees from Bristol-Myers Squibb and Pfizer and personal fees from Novartis, Roche Genentech, 1sbio, and Almac outside the submitted work. Dr Boughey reported receiving institutional support from Quantum Leap Healthcare Collaborative during the conduct of the study; grants from Eli Lilly and Company outside the submitted work; and a patent to methods and materials for treating cancer pending. Dr Lu reported receiving personal fees for serving on advisory boards from Daiichi, Novartis, Pfizer, and Puma Biotechnology outside the submitted work. Dr Lang reported receiving grants from Angi Parsortix and personal fees from Genomic Health outside the submitted work. Dr Han reported receiving institutional research funding from Quantum Leap Healthcare Collaborative during the conduct of the study and personal fees for speakers bureaus from Eli Lilly and Company outside the submitted work. Dr Clark reported receiving grants from Novartis outside the submitted work. Dr Nanda reported receiving grants from Immunomedics, OBI, Ondolite Therapeutics, Seattle Genetics, and Concept Therapeutics; grants and personal fees from AstraZeneca, Celgene, Daiichi, Genentech, Merck, and Pfizer; and personal fees from Aduro Biotherapeutics, Atheneum, Clovis, G1 Therapeutics, MacroGenics, Puma Biotechnology, Seattle Genetics, and Syndax Pharmaceuticals outside the submitted work.

Dr Khan reported receiving grants from Novartis outside the submitted work. Dr Edmiston reported receiving grants from Sawai Foundation during the conduct of the study. Dr Chui reported being a full-time employee of Genentech and owning Roche stock. Dr Park reported receiving personal fees from Genentech and Pfizer outside the submitted work. Dr Liu reported receiving grants from Eisai, Novartis, Seattle Genetics, and Tesaro; grants and nonfinancial support (travel costs) from Genentech, Grail, and Merck; and nonfinancial support (travel costs) from AstraZeneca, Genentech, Merck, and Pfizer; and personal fees from Aduro Biotherapeutics, Alnylam, Clovis, G1 Therapeutics, MacroGenics, Puma Biotechnology, Seattle Genetics, and Syndax Pharmaceuticals outside the submitted work.

Dr Yee reported receiving grants from Seattle Genetics and personal fees from Puma Biotechnology, Genentech/Roche, and Pfizer during the conduct of the study; and receiving personal fees from Genomic Health and Novartis outside the submitted work. Dr B. Chui reported receiving grants and nonfinancial support (supply of drugs) from Foundation for the NIH (FNIH) and Quantum Leap Healthcare Collaborative during the conduct of the study. Dr Magliocco reported receiving grants from Roche and Genentech and receiving personal fees from and being an employee and shareholder of Protean BioDiagnostics outside the submitted work. Dr Chien reported receiving institutional support from Quantum Leap Healthcare Collaborative during the conduct of the study and receiving institutional support from Merck, Seattle Genetics, Aagen, and Puma Biotechnology outside the submitted work. Dr Stringer-Reaor reported receiving grants from Susan G Komen and V Foundation and personal fees from Eli Lilly and Company. Immunogenics, and BIO outside the submitted work. Dr Puzata reported receiving grants and personal fees from Foundation for the NIH, AstraZeneca, Seattle Genetics, and Merck during the conduct of the study; and grants and personal fees from Bristol-Myers Squibb and Pfizer and personal fees from Novartis, Roche Genentech, 1sbio, and Almac outside the submitted work. Dr Boughey reported receiving institutional support from Quantum Leap Healthcare Collaborative during the conduct of the study; grants from Eli Lilly and Company outside the submitted work; and a patent to methods and materials for treating cancer pending. Dr Lu reported receiving personal fees for serving on advisory boards from Daiichi, Novartis, Pfizer, and Puma Biotechnology outside the submitted work. Dr Lang reported receiving grants from Angi Parsortix and personal fees from Genomic Health outside the submitted work. Dr Han reported receiving institutional research funding from Quantum Leap Healthcare Collaborative during the conduct of the study and personal fees for speakers bureaus from Eli Lilly and Company outside the submitted work. Dr Clark reported receiving grants from Novartis outside the submitted work. Dr Nanda reported receiving grants from Immunomedics, OBI, Ondolite Therapeutics, Seattle Genetics, and Concept Therapeutics; grants and personal fees from AstraZeneca, Celgene, Daiichi, Genentech, Merck, and Pfizer; and personal fees from Aduro Biotherapeutics, Atheneum, Clovis, G1 Therapeutics, MacroGenics, Puma Biotechnology, Seattle Genetics, and Syndax Pharmaceuticals outside the submitted work.
Amgen, Puma Biotechnology, AbbVie, Genentech, and Synta Pharmaceuticals during the conduct of the study. Dr. D. Berry reported being an employee of Berry Consultants, a private consulting company with clients in the pharmaceutical and medical device industry. Dr. Esserman reported receiving grants and from and serving as a board member (uncompensated) for Quantum Leap Healthcare Collaborative and receiving grants from NIH/NCI during the conduct of the study; and receiving personal fees and travel costs from Medical Advisory Panel for Blue Cross/Blue Shield outside the submitted work. Dr. D. Berry reported being co-owner of Berry Consultants, LLC, a company that designs adaptive clinical trials for pharmaceutical and medical device companies, NIH cooperative groups and grantees, patient advocacy groups, and international consortia. No other disclosures were reported.

Funding/Support: This work was supported by Quantum Leap Healthcare Collaborative (2013 to present) and the Foundation for the National Institutes of Health (2010 to 2012) and by a grant (2010-00128) from the National Cancer Institute Center for Biomedical Informatics and Information Technology. The authors sincerely appreciate the ongoing support for the I-SPY2 trial from the William K. Bowes Jr. Foundation, the Avon Foundation for Breast Cancer: the CTNeoBC pooled analysis.

REFERENCES

