Integration of DNA repair deficiency and immune biomarkers to predict which early stage triple negative breast cancer patients are likely to respond to platinum containing regimens vs. immunotherapy: the neoadjuvant I-SPY 2 TRIAL

Denise Wolf* & Christina Yau*

Julia Wulfkhule, Emmanuel Petricoin, Lamoma Brown-Swigart, Smita Asare, Gillian Hirst, I-SPY 2 Investigators, Doug Yee, Angie DeMichele, Don Berry, Hope Rugo, Olufunmilayo Olapade, Rita Nanda, Minetta Liu,

Laura Esserman & Laura van ‘t Veer

*equal contribution
Disclosure Information

AACR, 4/1/2019, mini-symposium #

Denise Wolf

I have no financial relationships to disclose.

I will not discuss off label use and/or investigational use in my presentation.
A changing treatment landscape for triple negative breast cancer

- **HR-HER2- (triple negative TN)**
 - Aggressive breast cancer subtype negative for estrogen receptor and HER2 amplification

- **Historically few treatment options**
 - Standard chemotherapy (anthracycline + taxane)
 - No targeted treatments

- **Multiple recent trials showing increased efficacy!**
 - *Platinum*-containing regimens (with and without PARP-inhibition)
 - GeparSixto, CALGB 40603, BrighTNess, **I-SPY 2**
 - *Immunotherapy*-containing regimens
 - **I-SPY 2**; IMpassion130,.. FDA approval - stage IV (atezolizumab); in progress: NeoTRIPaPDL1, KEYNOTE-522
The I-SPY 2 TRIAL Standing Platform for High Risk Early Stage Breast Cancer

- Phase II, adaptively-randomized neoadjuvant trial
- Shared control arm
 - Standard neoadjuvant chemotherapy
 - HER2+ also gets standard of care for targeted agents
- Simultaneous experimental arms
 - Up to four
- Primary endpoint: pathologic complete response (pCR)
 - Defined as no residual invasive cancer in the breast or lymph nodes

- Agents/combinations "graduate" for efficacy = reaching >85% predictive probability of success in a subsequent phase III trial in the most responsive patient subset
BOTH veliparib/carboplatin (VC) combination therapy AND pembrolizumab (P) graduated in the triple negative (TN) subset.

Platinum-based

- **carboplatin**
- **Damages DNA**
- **Breast cancer cells**
- **DNA repair deficient?**

51% estimated pCR rate in VC in TN (vs 26% in control)

Immunotherapy

- **pembrolizumab**
- **Inhibits immune checkpoint PD1**
- **Immunogenic/inflamed?**

60% estimated pCR rate in P in TN (vs 22% in control)

• **Who should get what and can we prioritize based on biomarkers to improve outcome?**

AACR 2019; this presentation is the intellectual property of the author/presenter (denise.wolf@ucsf.edu)
I-SPY 2 is a biomarker rich trial

Established
- Level 1 evidence
- FDA cleared or approved or IDE filed
- Used in clinical decision

QUALIFYING
- Level 2 evidence
- Have existing evidence for response prediction
- Evaluated in CLIA setting
- May be based on mechanism of action
- Hypothesis testing
 - Pre-defined biomarkers
 - Pre-specified rigorous statistical framework

EXPLORATORY
- Biomarker discovery
- Hypothesis generation
A growing body of evidence that particular biological tumor classes are more likely to respond to a given class of agent:

- For pembrolizumab and other immune checkpoint inhibitors, immune infiltrate/inflamed phenotype is associated with response.
 - Example biomarkers: TILs, CD8+ T cells, PDL1/PD1 staining, immune expression signatures across cancer types,.. [LOTS of evidence]

- For platinum drugs +/- PARP inhibitors, DNA repair deficiency associated with response.
 - Example biomarkers: BRCA1/2 germline mutation status, HRD in ovarian/breast cancers,..
Example mechanism-of-action qualifying expression signatures predicting response to pembrolizumab and carboplatin/veliparib

Previously we showed..

- Immune signatures, including for dendritic cells, predict response to pembrolizumab (P)

- DNA repair deficiency (DRD) biomarker PARPi7 predicts response to platinum/PARPi (VC)
 - 7 gene DNA-repair deficiency signature PARPi-7: BRCA1, CHEK2, MAPKAPK2, MRE11A, NBN, TDG, XPA. Predicts olaparib-sensitivity in cell lines (PMID:22875744) and pCR in I-SPY 2 patients in the VC arm relative to control (PMID: 28948212)

Immune biomarkers: Danaher et. al., J Immunother Cancer. 2017 (PMID: 28239471); Yau et. al., SABCS 2018
Hypothesis: overlap between Immune and DRD predictive biomarkers can be used to identify subgroups more likely to respond to immunotherapy vs. platinum-based therapy

To test this hypothesis, we used the example qualifying biomarkers: PARPi7 as our DRD biomarker (DRD+/-) and the dendritic signature as our Immune biomarker (Immune+/-)
Patients and methods

153 TNBC patients available for analysis in (Control: 85; VC: 39; Pembro: 29)

Step 1: Score continuous DRD and immune signatures as published

Step 2: Optimally dichotomize signatures into high/low

To identify optimal dichotomizing thresholds, 2-fold cross-validation was repeated 500 times.
1. Use VC response data to dichotomize DRD signature
2. Use Pemb roast response data to dichotomize Immune signature

Step 3: Bayesian modeling of estimated pCR rates

Within each patient subset defined by biomarker combinations:
1) What is the estimated pCR rates in the VC, Pembro and control arms?
Immune and DRD biomarkers, viewed individually

DRD+ patients have a high estimated pCR rate to VC (79%).

Immune+ patients have a high estimated pCR rate to Pembro (87%).
Are these the same patients?

(What is the overlap between Immune+ and DRD+?)
Overlap between immune and DRD predictive biomarkers in TNBC

- 40% positive for only one biomarker
- 14% Immune-/DRD+
- 26% Immune+/DRD-
- 20% Immune-/DRD-
- 40% Immune+/DRD+

Biomarker negative
Estimated pCR distributions within biomarker subgroups

- **Immune+/DRD+**: high pCR in Pembro (84%) and VC (83%)
- **Immune+/DRD-**
 - higher pCR in VC (64%)
- **Immune-+/DRD-**: low pCR in all arms
- **Immune-DRD-**
 - red line

- **Immune-DRD+**
 - highest pCR in Pembro (90%)
Which drug should be prioritized for whom?

- **TNBC**
 - Biomarker negative (Immune-/DRD-): ?
 - 1 biomarker positive
 - Immune+/DRD-: Pembro
 - Immune-/DRD+: VC
 - Both biomarkers positive (Immune+/DRD+): Pembro OR VC

Pembro OR VC
Summary

• TNBC is experiencing a period of optimism, with trials showing increased efficacy for platinum and immunotherapy containing regimens

• **Question:** are patients likely to respond to one treatment also likely to respond to the other, or is there specificity: *for what percentage does treatment selection matter? How to prioritize?*

• In I-SPY 2, carboplatin/veliparib and pembrolizumab both graduated in the TN subset

• Previously we showed: DRD signatures (e.g. PARPi7) predict response to VC; and immune signatures (e.g., dendritic cell score) predict response to Pembro

• One can use the overlap between Immune and DRD biomarkers to identify patient subgroups more likely to respond to immunotherapy vs. platinum-based therapy

• 40% high in both biomarkers (Immune+/DRD+) => high pCR in both arms (*either treatment good!*)

• 40% high in just one biomarker => highest pCR in Pembro if Immune+/DRD-; highest pCR in platinum if Immune-/DRD+ (*treatment choice matters! Basis for prioritizing?*)

• 20% low in both (Immune-/DRD-). Low pCR rate in both arms. *Alternative approach?*

• Caveat: numbers are small. Validation required.
I-SPY 2 Platform Trial Study Team

Working Group Chairs

<table>
<thead>
<tr>
<th>PI: Span class="highlight"</th>
<th>Operations: Angie DeMichele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia: Kevin Kalinsky</td>
<td>Imaging: Nola Hylton</td>
</tr>
<tr>
<td>Denver: Anthony Elias</td>
<td>Agents: Doug Yee</td>
</tr>
<tr>
<td>Gtown: Claudia Isaacs</td>
<td>Safety: Hope Rugo</td>
</tr>
<tr>
<td>Loyola: Kathy Albain</td>
<td>Operations: Angie DeMichele</td>
</tr>
<tr>
<td>Mayo: Judy Boughay</td>
<td>Imaging: Nola Hylton</td>
</tr>
<tr>
<td>Moffitt: Heather Han</td>
<td>Agents: Doug Yee</td>
</tr>
<tr>
<td>OHSU: Kathleen Kemmer</td>
<td>Safety: Hope Rugo</td>
</tr>
<tr>
<td>Swedish: Erin Ellis</td>
<td>Operations: Angie DeMichele</td>
</tr>
</tbody>
</table>

Sponsor:

Quantum Leap Healthcare Collaborative

Dave Mandelkern, Nancy Lisser, Mike Bankert, Adam Asare, Smita Asare

Biomarkers: Denise Wolf, Christina Yau, Chip Petricoin, Julia Wulfkuhle, Lamorna Swigert, Gill Hirst, Mark Magbanua & Collaborators

Site PIs

<table>
<thead>
<tr>
<th>Site PIs</th>
<th>Site PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland</td>
<td>Kevin Kalinsky</td>
</tr>
<tr>
<td>Denver</td>
<td>Anthony Elias</td>
</tr>
<tr>
<td>Gtown</td>
<td>Claudia Isaacs</td>
</tr>
<tr>
<td>Loyola</td>
<td>Kathy Albain</td>
</tr>
<tr>
<td>Mayo</td>
<td>Judy Boughay</td>
</tr>
<tr>
<td>Moffitt</td>
<td>Heather Han</td>
</tr>
<tr>
<td>OHSU</td>
<td>Kathleen Kemmer</td>
</tr>
<tr>
<td>Swedish</td>
<td>Erin Ellis</td>
</tr>
</tbody>
</table>

Site PIs

<table>
<thead>
<tr>
<th>Site PIs</th>
<th>Site PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAB</td>
<td>Andres Forero-Torres</td>
</tr>
<tr>
<td>UChi</td>
<td>Rita Nanda</td>
</tr>
<tr>
<td>UCSD</td>
<td>Anne Wallace</td>
</tr>
<tr>
<td>UCSF</td>
<td>Jo Chien</td>
</tr>
<tr>
<td>UMinn</td>
<td>Doug Yee</td>
</tr>
<tr>
<td>UPenn</td>
<td>Amy Clark</td>
</tr>
<tr>
<td>USC</td>
<td>Julie Lang</td>
</tr>
<tr>
<td>Yale</td>
<td>Tara Sanft</td>
</tr>
</tbody>
</table>

Program Management Office

Executive Director: Smita Asare

Program Administration: Kat Steeg, Lorena Kanu, Julie Leduc, Jill Parker, Melanie Hanson

Safety: Sausan Abouharb, Linda Doody, Monina Angeles, CCSS

Data Analysis & IT

Christina Yau, Adam Asare, Garry Peterson, Amy Wilson, Tim Fu

Operations Manager: Ruby Singhrao

Biomarkers/Specimens:

Lamorna Brown-Swigart, Gillian Hirst, Denise Wolf, Chip Petricoin, Julia Wulfkuhle

I-SPY Imaging Lab:

Jessica Gibbs, Melanie Regan

Business Development:

Julie Sudduth-Klinger, Dan Dornbusch

Grants:

Jeff Matthews

Thank you to the remarkable patients and families, and all of the investigators, staff, our DSMB and advocates for supporting the trial
I-SPY 2 Participating Organizations and Funders

Sponsor
Quantum Leap
A Healthcare Collaborative
Funders, Operations
UCSF
Biomarker Platforms
Natera
Hologic
Biomarker Device Providers
Seattle Genetics
Pfizer
Daiichi-Sankyo
AMGEN
Genentech
SYNTA
AbbVie
Abbott
Merck
Plexxikon
Biomarker Platforms
Salesforce
Agendia
TGen
UCSF
OHSU

AACR 2019; this presentation is the intellectual property of the author/presenter (denise.wolf@ucsf.edu)