I have no financial relationship(s) with commercial interests to disclose.
Pathological Complete Response Predicts Event-Free and Distant Disease Free Survival in the I-SPY 2 TRIAL

Douglas Yee, MD
Masonic Cancer Center, University of Minnesota

On behalf of I-SPY2 Investigators and authors:

pCR and EFS

- FDA Meta Analysis (Cortazar et al, Lancet 2014)
 - >11K patients from 12 neoadjuvant trials
 - Median follow-up for EFS: 5.4 years

![Event-free survival graph]

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>Pathological complete response</th>
<th>No pathological complete response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since randomisation (years)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Pathological complete response</td>
<td>2131</td>
<td>1513</td>
</tr>
<tr>
<td>No pathological complete response</td>
<td>9824</td>
<td>6169</td>
</tr>
</tbody>
</table>

HR

- HER2-negative: 0.48 (95% CI 0.43-0.54)
- HER2-positive: 0.39 (95% CI 0.31-0.50)
- Triple negative: 0.24 (95% CI 0.18-0.33)
Study Design

HR+/HER2- patients with low-risk MammaPrint Scores are not enrolled in I-SPY2
Analysis

• **Primary Endpoint:**
 • Pathological complete response (pCR)
 • Defined as no residual invasive cancer in breast or lymph nodes
 • Assessed using the Residual Cancer Burden (RCB) method*
 • Highly reproducible between local and central pathologist review

• **Intent-to-treat:**
 • Patients who did not complete assigned therapy are considered non-pCR (withdrew, left the institution, received non-protocol therapy, or progressed).

• **Secondary endpoints:**
 • RCB
 • EFS

• **I-SPY 2 To Date**
 • >1000 patients completed surgery
 • 11 investigational agents/combinations

EFS Dataset

- Evaluable population: 746
 - 259 (35%) pCR, 487 (65%) non-pCR
- Median follow-up: 2.7 yrs (0.02-7.2)
- 126 EFS events, 109 DRFS events
- 12 patients did not go to surgery
 - considered non-pCR per protocol

pCR distribution by subtype

<table>
<thead>
<tr>
<th>pCR</th>
<th>HR-HER2- (n=245)</th>
<th>HR+HER2- (n=275)</th>
<th>HR-HER2+ (n=77)</th>
<th>HR+HER2+ (n=149)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCR</td>
<td>100 (41%)</td>
<td>49 (18%)</td>
<td>52 (68%)</td>
<td>58 (39%)</td>
</tr>
<tr>
<td>no pCR</td>
<td>145 (59%)</td>
<td>226 (82%)</td>
<td>25 (32%)</td>
<td>91 (61%)</td>
</tr>
</tbody>
</table>
Agent Timeline

11 Agents Included in this analysis
pCR is a highly significant predictor of EFS and DRFS

EFS

- 3yr EFS: 94%
- 3yr EFS: 76%

Hazard Ratio: 0.20

(95% CI: 0.11-0.36)

Log rank p: 1.17e-09

OVERALL

DRFS

- 3yr DRFS: 95%
- 3yr DRFS: 79%

Hazard Ratio: 0.20

(95% CI: 0.11-0.37)

Log rank p: 1.75e-08

Number at Risk
- non-pCR: 487, 418, 288, 186, 89, 40, 13, 0
- pCR: 259, 232, 166, 109, 59, 23, 4, 0

Number at Risk
- non-pCR: 487, 430, 295, 193, 95, 41, 14, 0
- pCR: 259, 233, 167, 110, 60, 24, 4, 0

This presentation is the intellectual property of Douglas Yee. Contact yeexx006@umn.edu for permission to reprint and/or distribute.
pCR is predictive of EFS and DRFS in TNBC

EFS

HR-HER2- (n=245)

3yr EFS: 92%

3yr EFS: 67%

Hazard Ratio: 0.17
(95% CI: 0.07-0.39)
Log rank p: 2.60e-06

non-pCR

pCR

DRFS

HR-HER2- (n=245)

3yr DRFS: 94%

3yr DRFS: 70%

Hazard Ratio: 0.16
(95% CI: 0.06-0.40)
Log rank p: 8.62e-06

non-pCR

pCR

Number at Risk
non-pCR 145 118 70 48 24 12 3 0
pCR 100 92 61 44 25 10 2 0

Number at Risk
non-pCR 145 123 73 50 25 12 3 0
pCR 100 92 61 45 26 11 2 0

This presentation is the intellectual property of Douglas Yee. Contact yeexx006@umn.edu for permission to reprint and/or distribute.
pCR is predictive of EFS and DRFS in HR+/HER2−

EFS

HR+HER2− (n=275)

- 3yr EFS: 94%
- 3yr EFS: 79%

Hazard Ratio: 0.21

(95% CI: 0.05-0.85)

Log rank p: 0.016

DRFS

HR+HER2− (n=275)

- 3yr DRFS: 94%
- 3yr DRFS: 80%

Hazard Ratio 0.22

(95% CI: 0.05-0.93)

Log rank p: 0.024

This presentation is the intellectual property of Douglas Yee. Contact yeexx006@umn.edu for permission to reprint and/or distribute.
pCR is predictive of EFS and DRFS in HR−/HER2+

EFS

HR−HER2+ (n=77)

- **3yr EFS:** 93%
- **Hazard Ratio:** 0.10
 - (95% CI: 0.03-0.37)
 - Log rank p: 1.98e-5

Years

<table>
<thead>
<tr>
<th>Number at Risk</th>
<th>non-pCR</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

DRFS

HR−HER2+ (n=77)

- **3yr DRFS:** 93%
- **Hazard Ratio:** 0.14
 - (95% CI: 0.04-0.51)
 - Log rank p: 5.09e-4

Years

<table>
<thead>
<tr>
<th>Number at Risk</th>
<th>non-pCR</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
pCR is predictive of EFS and DRFS in HR+/HER2+

EFS

HR+HER2+ (n=149)

- 3yr EFS: 96%
- 3yr EFS: 87%

DRFS

HR+HER2+ (n=149)

- 3yr DRFS: 92%

Hazard Ratio:

- **EFS:** 0.26 (95% CI: 0.06-1.14) Log rank p: 0.054
- **DRFS:** 0.19 (95% CI: 0.02-1.51) Log rank p: 0.080

Number at Risk

- **non-pCR**
 - EFS: 91 78 62 42 22 10 4 0
 - DRFS: 91 81 63 44 24 11 4 0

- **pCR**
 - EFS: 58 49 37 20 10 6 2 0
 - DRFS: 58 50 38 20 10 6 2 0

This presentation is the intellectual property of Douglas Yee. Contact yeex006@umn.edu for permission to reprint and/or distribute.
EFS by pCR & non-pCR by Subtype

3yr EFS:
- HR-HER2-: 92%
- HR-HER2+: 93%
- HR+HER2-: 94%
- HR+HER2+: 96%

pCR (n=259)

Number at Risk
- HR-HER2-: 100 92 61 44 25 10 2 0
- HR-HER2+: 52 47 39 23 13 4 0 0
- HR+HER2-: 49 44 29 22 11 3 0 0
- HR+HER2+: 58 49 37 20 10 6 2 0

Years
- 0 1 2 3 4 5 6 7

EFS
- 1.0 0.8 0.6 0.4 0.2 0.0

non-pCR (n=487)

3yr EFS:
- HR-HER2-: 67%
- HR-HER2+: 53%
- HR+HER2-: 79%
- HR+HER2+: 87%

Number at Risk
- HR-HER2-: 145 118 70 48 24 12 3 0
- HR-HER2+: 25 18 12 7 4 1 1 0
- HR+HER2-: 226 204 144 89 39 17 5 0
- HR+HER2+: 91 78 62 42 22 10 4 0

Years
- 0 1 2 3 4 5 6 7

EFS
- 1.0 0.8 0.6 0.4 0.2 0.0
EFS and DRFS Hazard Ratio for pCR vs non-pCR

<table>
<thead>
<tr>
<th>Subtype</th>
<th>N</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>746</td>
<td>0.20 (0.11-0.36)</td>
</tr>
<tr>
<td>HR+HER2-</td>
<td>275</td>
<td>0.21 (0.05-0.85)</td>
</tr>
<tr>
<td>HR+HER2+</td>
<td>149</td>
<td>0.26 (0.06-1.14)</td>
</tr>
<tr>
<td>HR-HER2+</td>
<td>77</td>
<td>0.10 (0.03-0.37)</td>
</tr>
<tr>
<td>HR-HER2-</td>
<td>245</td>
<td>0.17 (0.07-0.39)</td>
</tr>
</tbody>
</table>

EFS

DRFS

Hazard Ratio (95% CI)

0.20 (0.11-0.37)
0.22 (0.05-0.93)
0.19 (0.02-1.51)
0.14 (0.04-0.51)
0.16 (0.06-0.40)
I-SPY2 EFS Hazard Ratio for pCR/non-pCR compared to FDA meta-analysis and cooperative group results

<table>
<thead>
<tr>
<th></th>
<th>I-SPY 2</th>
<th>Cortazar Meta-analysis</th>
<th>Cooperative Group CALGB 40603</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.20 (0.11-0.36)</td>
<td>0.48 (0.43-0.54)</td>
<td></td>
</tr>
<tr>
<td>*HR+HER2-</td>
<td>0.21 (0.05-0.85)</td>
<td>0.49 (0.33-0.71)</td>
<td></td>
</tr>
<tr>
<td>HER2+</td>
<td>0.21 (0.08-0.55)</td>
<td>0.39 (0.31-0.50)</td>
<td></td>
</tr>
<tr>
<td>HR-HER2-</td>
<td>0.17 (0.07-0.39)</td>
<td>0.24 (0.18-0.33)</td>
<td>0.30 (0.19-0.45)</td>
</tr>
</tbody>
</table>

Mammaprint low patients excluded
Summary

• pCR is a strong predictor of EFS and DRFS in the setting of a multiple agent platform trial that includes:
 • Standards for eligibility
 • *high risk for early recurrence (MP low risk, HR+Her2- excluded)*
 • *exclusion of metastatic disease*
 • All chemotherapy given before pCR determination
 • Standards for pathology assessment and multidisciplinary identification (surgeons, radiologists, pathologists)
 • Long term follow-up of patients over time (correlation of early, intermediate, and late endpoints)

• pCR is equally predictive across all tumor subsets

• pCR as an endpoint enables rapid evaluation of novel therapy combinations and can accelerate the identification of effective and potentially less toxic regimens
The Future of I-SPY 2

• Achieving pCR through any therapy for any subtype is a sufficient endpoint

• Develop minimally invasive techniques (MRI and biopsy) to identify pCR prior to definitive surgery
 • Validate robust MRI and tissue predictors of pCR
 • Deescalate toxic therapy (AC) if pCR obtained early

• Re-assign patients to new therapies if pCR is not predicted
 • Validate robust MRI and tissue predictors of non-PCR
 • Assign new therapies based on molecular profiling of tumor and link to investigational agents
Acknowledgements

WORKING GROUP CHAIRS

PI: Laura Esserman Operations: Angie DeMichele
Co-PI: Don Berry Biomarkers: Laura van ‘t Veer
Imaging: Nola Hytton Pathology: Fraser Symmans
Agents: Doug Yee Advocates: Jane Perlmutter
Safety: Hope Rugo PRO/QOL: Michelle Melisko

SITE PRINCIPAL INVESTIGATORS

Columbia: Kevin Kalinsky UAB: Andres Forero-Torres
Denver: Anthony Elias UChi: Rita Nanda
Gtown: Claudine Isaacs UCSD: Anne Wallace
Loyola: Kathy Albain UCSF: Jo Chien
Mayo: Judy Boughey UMinn: Doug Yee
Moffitt: Heather Han UPenn: Amy Clark
OHSU: Kathleen Kemmer USC: Julie Lang
Swedish: Erin Ellis Yale: Tara Sanft

SPONSOR

Quantum Leap Healthcare Collaborative
Dave Mandelkern, Nancy Lisser, Mike Bankert, Adam Asare, Smita Asare, Kristen Zeitzer

PROJECT OVERSIGHT

Anna Barker/ASU, Gary Kelloff/NCI, Janet Woodcock/FDA, Richard Pazdur/FDA, Robert Becker/FDA, ShaAvhree Buckman/FDA,CDER, Steve Gutman, David Wholley/FNIH

PROGRAM MANAGEMENT OFFICE

Executive Director: Smita Asare
Program Administration: Kat Steeg, Lorena Kanu, Julie LeDuc, Jill Parker, Melanie Hanson
Safety: Sausan Abouharb, Linda Doody, Monina Angeles, CCSA
Data Analysis & IT: Christina Yau, Adam Asare, Garry Peterson, Amy Wilson, Tim Fu

PRIOR COLLABORATORS and STAFF

Larissa Korde, Rashmi Murthy, Donald Northfelt, Qamar Khan, Kirsten Edmiston, Rebecca Viscusi, Barbara Haley, Amelia Zelnak, Meredith Buxton, Melissa Paolini, Julia Lyandres,

Thank you to the remarkable patients and families, our amazing advocates, all of the investigators, staff, and our DSMB for supporting the trial
Participating Organizations

FUNDING PARTNERS

<table>
<thead>
<tr>
<th>Organization</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>William K Bowes, Jr. Foundation</td>
<td>Quintiles</td>
</tr>
<tr>
<td>Give Breast Cancer the Boot</td>
<td>The Breast Cancer Research Foundation</td>
</tr>
<tr>
<td>University of California San Francisco (UCSF)</td>
<td>Safeway, an Albertsons Company</td>
</tr>
<tr>
<td>The Biomarkers Consortium</td>
<td></td>
</tr>
</tbody>
</table>

INVESTIGATIONAL AGENT PROVIDERS

<table>
<thead>
<tr>
<th>Organization</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle Genetics</td>
<td>Synta Pharmaceuticals</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>Genentech</td>
</tr>
<tr>
<td>Daiichi-Sankyo</td>
<td>Amgen</td>
</tr>
<tr>
<td>Merck</td>
<td>Plexxikon</td>
</tr>
<tr>
<td>Pfizer</td>
<td></td>
</tr>
<tr>
<td>Puma Biotechnology</td>
<td></td>
</tr>
<tr>
<td>AbbVie</td>
<td></td>
</tr>
</tbody>
</table>

STUDY SPONSOR

<table>
<thead>
<tr>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Leap Health Care Collaborative</td>
</tr>
</tbody>
</table>

BIOMARKER PLATFORMS & DATA SUPPORT

<table>
<thead>
<tr>
<th>Organization</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berry and Associates</td>
<td>Hologic</td>
</tr>
<tr>
<td>CCS Associates</td>
<td>Novella Clinical</td>
</tr>
<tr>
<td>salesforce</td>
<td>Oregon Health & Science University (OHSU)</td>
</tr>
<tr>
<td>Agendia</td>
<td>UCSF</td>
</tr>
<tr>
<td>Natera</td>
<td>The Translational Genomics Research Institute (TGen)</td>
</tr>
</tbody>
</table>