
Building a tech stack 
for ML expertise



Machine learning is increasingly important for driving 

business value, but it brings its own set of operational 

issues. Google, one of the earliest adopters of machine 

learning, summarized this in their paper “Machine Learning: 

The High Interest Credit Card of Technical Debt”, where they 

described the dangers of blindly applying standard 

engineering practices to machine learning in production.



ML Ops is a new business requirement that has emerged to 

support enterprise-grade machine learning. These tools 

provide the groundwork that practitioners need to achieve 

high efficiency and build reliable models.



In a quickly evolving space, traditional analysts struggle to 

compile sensible recommendations. For example, Gartner 

described SAS and MathWorks as the leading data science 

and machine learning platforms.



We've worked with hundreds of enterprises and observed 

the differences that great tooling can make in scaling 

production ML. Not every tool is right for every business, 

but we present a decision making framework so you can 

choose the tools that fit your objectives.

Executive Summary



Your machine learning models can be a huge competitive 

advantage or disadvantage. At this point, nearly every 

successful enterprise has either built software competency 

or been disrupted. We see the same trend emerging with 

machine learning, only this time it's unfolding faster. 



Some companies choose to outsource all of their machine 

learning competence to consultants or tools that claim to 

automate all of machine learning development. We think 

this is a huge mistake, and we think these companies will 

gradually disappear. We're focusing on executives that 

know that they need to build an ML team in-house and 

support them with high quality infrastructure. 



The best companies know that the models and data are the 

source of their competitive edge, but they only exist 

because of the ML team and the ML Ops infrastructure.

Why your ML Ops tech stack is strategic



Common anti-patterns

We recently talked to a CTO of a large online retailer, and he 

described how 3 separate teams had all built separate 

internal tools for experiment tracking and model 

deployment.

We talked to the head of ML of a large tech-forward 

company that had adopted machine learning early. They 

built all their tooling around the Caffe framework, which at 

the time made sense from a purely technical perspective. 

When the main Caffe author left the project, the framework 

became increasingly less supported. Now the company 

wants to transition to PyTorch, but it's hard to resource such 

a huge undertaking.

We talked to a non-technical executive at a consumer 

packaged goods company. His ML team told him that 

building low-level internal ML tooling was a path to 

long-term strategic advantage and a way to create valuable 

IP. Unfortunately, after two years and millions of dollars of 

investment, open source tools such as TensorFlow Extended 

offer better solutions to the same problems, and he's 

planning to abandon the internal work.

BETTING ON THE WRONG SOFTWARE

INVESTING IN THE WRONG AREAS



Success stories

John Deere heavily invested in flexible internal tooling. For 

example, they supported TensorFlow and PyTorch at the 

same time. They let the ML practitioners do lots of 

experimentation with third party tools and find the best fit. 

The result is that they've built a strong developer brand, 

and have been able to attract top-tier talent over their 

competitors. 

Toyota needed to keep pace with competitors' autonomous 

vehicle projects. They chose to partner with third-party 

vendors to accelerate the speed of development.

Insitro needed to connect their machine learning models to 

real-world wet lab experimentation in a highly regulated 

industry. Their internal tools teams are focusing attention 

on the truly custom work needed to piece their advanced 

pipeline together, and incorporating third-party tools to 

solve the common machine learning problems.

DEVELOPER-LEAD TOOLING

DEVELOPMENT VELOCITY

Focus on differentiation



Decision points

Some companies buy in to complete platforms like 

DataRobot. They benefit from fast ramp-up with a less 

experienced technical team. As organizations scale and 

requirements change, it can be hard to adapt these less 

flexible systems to new technologies. 


For example, Transformers first appeared in 2019 and are 

now the industry standard for anyone doing natural 

language processing, yet they're still not supported by 

popular platforms. Another downside of platform lock-in 

is the difficulty in hiring. Engineers are attracted to roles 

that build transferable skills.

Many engineers view building internal ML tools as a path 

towards career advancement and an entry into the 

lucrative ML space. This is not necessarily a bad thing, but 

it may not be aligned with your business objectives.


Companies often view building in-house tools as a way to 

build a strategic advantage around machine learning 

competence, but actually most tech-forward companies 

such as Google, Facebook, CapitalOne, and Genentech 

heavily rely on third party tools and view the data and 

models as their strategic advantage. As third party tools 

mature, we expect this trend to expand across industries.

Platform vs. toolkit 

In-house vs. third party



ML Ops decision 
framework

Vendor lock-in


Hiring elite talent


Total cost of ownership


Software viability


Visibility


Governance and privacy



ML Ops decision framework

Google offers infrastructure in Google Cloud, backs the 

popular framework TensorFlow, and sells higher-level tooling 

such as Auto ML. Amazon also sells bare infrastructure in AWS, 

offers SageMaker for higher level model training abstraction, 

and sells specialized ML APIs such as Rekognition.


Amazon and Google claim that their software is interoperable, 

but also have explicitly stated that they use their ML tools as a 

differentiating wedge to move customers to their 

infrastructure.


On one hand, Google will naturally offer phenomenal support 

for TensorFlow models, but recently PyTorch has become 

increasingly popular, and currently Google support is lacking. 

Infrastructure and framework-agnostic vendors that only offer 

one level of the stack represent safer long-term choices.

It's long been known that the best engineers care about their 

employer's tech stack. Companies have come to realize that 

their technical choices have an impact on who they are able to 

hire. Competent ML practitioners are sought after and hard to 

find, so this is especially important. In-house tools represent 

non-transferrable skills, which are particularly unappealing.


Obscure tools such as Jax or MXNet may be sensible technical 

choices, but put you at the mercy of a small number of 

specialists. Proprietary tools, especially black-boxes such as 

Domino or SigOpt, can make developers feel like they're not 

learning generalizable skills.

Vendor lock-in

Hiring elite talent



ML Ops decision framework

The real cost of your ML projects is the people, hardware, and 

data. The cost of tools or platforms will always be small in 

comparison, and more expensive tools aren't necessarily 

better than free or open source tools, though they often are.


If your primary cost is people, then you should view tools in 

the lens of what efficiency improvements are possible. Many 

ML practitioners say they spend most of their time cleaning 

and examining data, so an investment in data cleaning and 

visualization tools could be smart.


If your primary cost is hardware, you should look for tools that 

make sure your hardware is used efficiently. We've found that 

when practitioners have easy access to system information, 

they're empowered to make their processes more efficient, 

and there is an order of magnitude of possible efficiency 

gains. For example, most model training runs don't fully use 

the expensive GPU that they're running on. Most experiments 

aren't actually necessary with a smarter hyperparameter 

search scheme. Re-running experiments is not necessary 

when you have a reliable system of record.


If your primary cost is data, and you've done everything to 

lower your cost of data, then you should focus on empowering 

your team with tools that make sure they make full use of the 

data. Resist the temptation to over-optimize hardware spend.

total cost of ownership



ML Ops decision framework

There's rapid change in the ML space, and picking a tool 

from a company that goes out of business or an open source 

project that stops being maintained is a disaster that you 

should avoid.


Open source tools aren't a hedge against a company going 

out of business. Caffe, MXNet, Theano are all examples of 

once-popular open source tools that have since fallen out of 

maintenance and left users with a migration nightmare and 

possible security vulnerabilities.


It might seem safer to go with a big company like Microsoft 

or IBM, but they have been increasingly willing to deprecate 

or shut down tools such as MLStudio.


Apart from avoiding lock-in, it's important to look at signals 

that the technology you're choosing has momentum and an 

active ecosystem.

software viability



ML Ops decision framework

We think that user experience is a highly under-rated aspect of 

developer tools in general, and ML tools in particular. Many of 

the high profile ML PR disasters have come from developers 

not following basic best practices. For example, Microsoft 

came under scrutiny for releasing a facial recognition model 

that performed much worse on black people.


Clearly, the developers neglected to look at the class 

distributions of their input data, a mistake that could have 

easily been avoided and probably would have been avoided if 

they had tools that made it easy to visualize their input data. 

Mistakes like this aren't always so high profile, but always lead 

to bad outcomes. This is why, even for expert developers, 

tools that make it effortless to follow best practices are 

essential for reliable model development and ML safety.

Data governance and privacy requirements differ across 

industries, but in the most meaningful machine learning 

applications such as healthcare or autonomous vehicles, 

regulatory compliance is a huge issue.


A common issue in ML is ensuring that a specific piece of data 

wasn't used in a deployed model. As model pipelines grow in 

complexity, this can become a real challenge. For example, ML 

leaders at iRobot detailed the evolution of their machine 

learning toolkit to support model governance. A good ML Ops 

stack in any application should make it effortless to know the 

data provenance of any model in production.

visibility

Governance and privacy



Components of the 
superior ML stack

Hardware and infrastructure


Frameworks


Dataset versioning


Experiment tracking


Continuous integration


Production monitoring




Components of the superior ML stack

At the time of writing in late 2020, training on NVIDIA hardware 

is significantly cheaper than using Azure, AWS, or GCP's 

hosted cloud GPU/TPU offerings. Even though that's the case, 

most companies we work with choose to run their training in 

the cloud for convenience, unless there is a regulatory 

compliance issue. 


Azure, AWS, and GCP's pricing is similar, so most companies 

choose to train on the same cloud that they use for the rest of 

their development, but only GCP offers TPUs, so for some use 

cases their offering is superior.


Building your own hardware is a challenge, but companies like 

Lambda Labs make it easy to set up an in-house cluster.

Surprisingly, most of our customers do not use a single 

framework. Each framework has its own set of advantages, 

and the frameworks borrow quite a lot from each other, but at 

this moment the clear leaders are Scikit for traditional 

machine learning and PyTorch and TensorFlow / Keras for 

deep learning. 


One reason to support multiple frameworks is that there is a 

huge amount of open source work to build on for any 

application, and the open source projects are written in 

different frameworks. Companies that make a seemingly 

sensible decision to standardize on a single framework often 

end up undoing that decision when a crucial open-source 

project is built on a different framework.

hardware and infrastructure

Frameworks



Components of the superior ML stack

Some companies have a small amount of incredibly valuable 

data. For example, for some healthcare applications, 100 

records would be an impressive cache of information. For 

other companies, they have terabytes of data that flow 

through their system hourly, so it's not even realistic to save 

all the data that they might use.


Therefore, there's no single best data versioning tool or 

system, but most companies don't actually systematically do 

dataset versioning right now which is a recipe for disaster.


Without the dataset that a model was trained on, it's 

impossible to have reproducibility and it's hard to have any 

sense of explainability.

The essential task of an ML practitioner is to run experiments 

in the same way that the essential task of a software engineer 

is to write code. no company would dream of saving their 

code in an ad-hoc system, yet until recently there wasn't a 

systematic way to save ML experiments.


A good experiment tracking tool has the opportunity to do 

more than just save experiments. It can make practitioners 

exponentially more efficient by helping them sift through the 

enormous amount of data that's generated as a model trains.

dataset versioning

experiment tracking



Components of the superior ML stack

When we talk to ML practitioners, one of the biggest drags on 

productivity is a small inadvertent change that degrades 

model performance for the whole team and goes unnoticed 

for weeks. 


That change can invalidate all the downstream results, and 

this problem isn't unique to ML. It was solved a long time ago 

with continuous integration systems for software engineering, 

but model building is fundamentally different than software 

engineering in that there is not always a clear set of unit tests 

that need 100% pass rate. 

The best companies set up a system for automatically testing 

the latest changes to their codebase, and this needs to 

happen automatically. Excellent companies retrain their 

models all the time and fearlessly deploy those new models 

into production. Real world data distributions change over 

time, so only deploying once every 6 months due to concerns 

around the reliability of the model can severely degrade 

production performance. 


Bad tooling will make it scary to deploy a new model to 

production, so deployments will happen less frequently. In 

traditional software development, infrequent deployments 

lead to stagnation and low moral, but in ML the model 

performance will often degrade. For example, a model trained 

on tweets from 2019 would perform significantly worse on 

data from just one year later.

Continuous integration and deployment

experiment tracking



Components of the superior ML stack

Machine learning is powerful but can be brittle, especially 

when a model is exposed to data it wasn't trained on. There's 

two common modes of failure to look out for: unexpected 

inputs and data drift.

New data that is unlike any data the model has seen before 

can be catastrophic. For example, if you look at the 

well-known crashes of Teslas in auto-pilot, there's almost 

always a very unexpected situation like a semi-truck parked 

perpendicularly across the highway. 


The problem is that models don't typically throw errors, so 

unless you're explicitly monitoring for unexpected inputs, you 

may not know that there's an issue.

If you deploy a fraud model, attackers can probe it for 

vulnerabilities and find ways to exploit it. Your model quickly 

starts performing a lot worse on the real world production 

data than the data the model was trained on. This failure 

mode is subtle but also common, where your underlying 

world changes. For example, seasonality in demand 

forecasting has long been a known issue. Surprise events like 

COVID-19 can completely undermine the performance of 

predictive models. 


These issues aren't necessarily hard to spot if you're looking 

for them, but you need tooling that consistently surfaces 

changes in input distributions.

unexpected inputs

Data drift



Strong ML Ops are increasingly crucial to support enterprise 

machine learning. There are dozens of frameworks and 

tools emerging in this space, and it's challenging to predict 

which tools will best support your team in the rapidly 

evolving landscape of ML applications.



Successful leaders making ML tools decisions are taking into 

account vendor lock-in and avoiding proprietary tools that 

will fall behind industry standards and make hiring 

challenging. Though it's tempting to buy into open-source 

libraries, we've seen enterprise ML teams struggle to 

migrate projects after these tools fall out of favor. 



Prioritizing viable tools that have momentum and traction, 

a solid ML tech stack will incorporate a reliable system of 

record that provides visibility across the organization. At the 

end of the day, these tools should empower ML 

practitioners to make well-informed decisions and build 

reproducible models.


Conclusion


