Fatigue Testing of a New Generation of Commercial Scale Ultra-low Inclusion NiTi Alloy

May 17, 2022

Dr. Andie Pequegnat

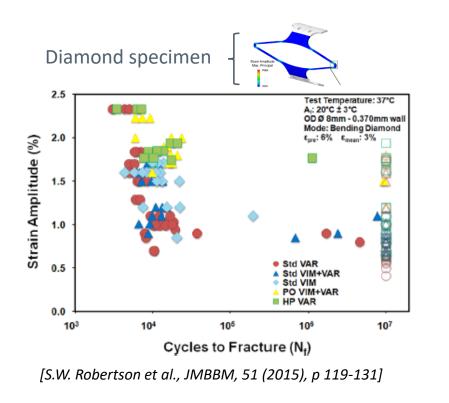
saes group a SAES Group company

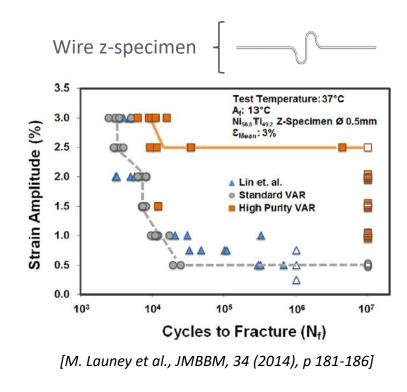
- SMST2022 Shape Memory and Superelastic Technologies Conference and Exposition
- 1. Characterize Nitinol wire material produced from SAES Smart Material (SSM) ultra-low inclusion Enduro ingot and benchmark with SSM's standard ingot
- 2. Demonstrate improved fatigue performance of the new Enduro Nitinol alloy

Agenda

- Background on Gen III Nitinol and Fatigue
- Experimental Sample Prep.
- Material Characterization
- RBT Fatigue Testing and Results
- Z-Specimen Testing and Results
- Summary

A **new** nitinol material, engineered to go the distance in ultra-demanding applications.





Background

Why low-inclusion Nitinol?

- + Extensive studies conducted on the significant impact of inclusion size and density on fatigue
- Ultra-clean Nitinol materials becoming a requirement for cardiovascular and neurovascular implant applications that demand extreme durability

The Enduro Nitinol Alloy

- Engineered to reduce inclusion size and density through newly developed proprietary vacuum melting and optimized conversion processes
- ✤ ASTM F2063-18 compliant Nitinol ingot
- Available in all Nitinol product forms

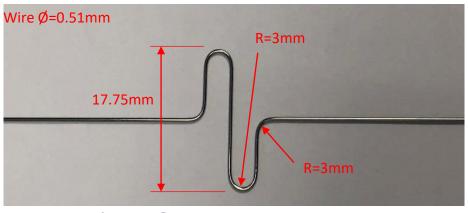
The Enduro Nitinol Alloy

Robustness Testing / Specification Development

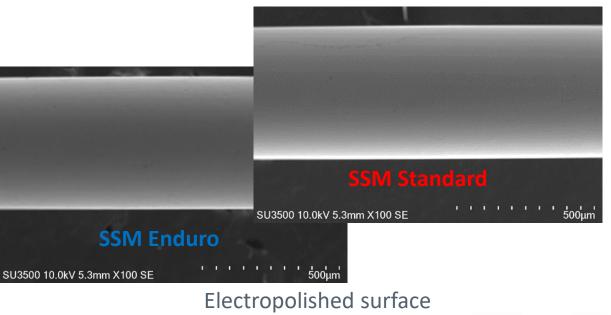
- Comprehensive robustness campaign executed to validate processes & develop inclusion specs.
 - 18 ingots produced in three separate melting campaigns of six ingots each
 - Total of 486 fields of view analyzed at 500x magnification from 6 mm coil and 25 mm bar
- Effectively eliminated non-metallic inclusions with length > 12 μm and greatly reduced inclusion density of particles over 1 μm
 - Density of >5 µm inclusions reduced 10x from standard VIM+VAR alloy!

	Max Inclusion Size [μm]	Max Inclusion Area [%]
ASTM F2063-18 Requirement	39.0	2.8
SSM Standard	26.0	2.0
SSM Enduro	12.0	0.5

SAES Smart Materials (SSM) Alloy Inclusion Specifications



Experimental



Fatigue Sample Preparation (RBT & Z-Specimen)

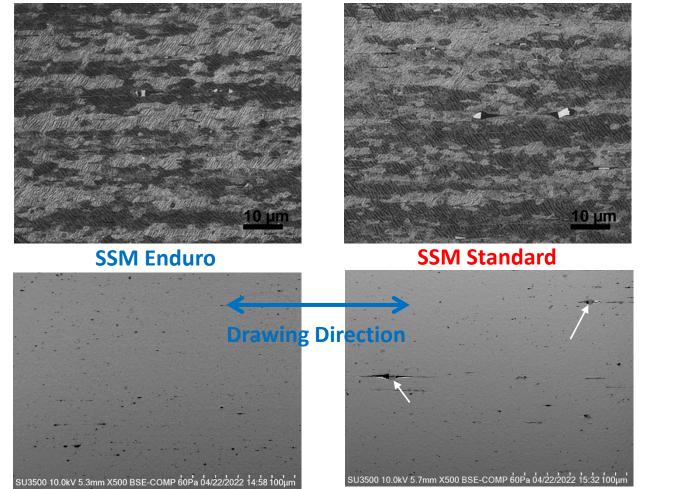
- ✤ SSM standard and Enduro, A_s -15±10°C, ingots used in study
- 0.53mm (0.021") wire drawn at Memry <u>using identical draw schedules</u>
- Shape set heat treatment \rightarrow 2.5 min. @ 525°C in salt pot
- Surface Finish \rightarrow Electropolished to 0.51mm (0.020")

Z-specimen Geometry [K. Pike, et al. 2010]

Inclusion & Composition Analysis

- ✤ Ingot inclusion analysis performed on 6 mm dia. coils with 27 fields of view at 500x magnification
- + Enduro Oxygen and Carbon composition in line with average identified in robustness campaign

(i.e. C \rightarrow 258±18 ppm, O \rightarrow 208±26ppm)

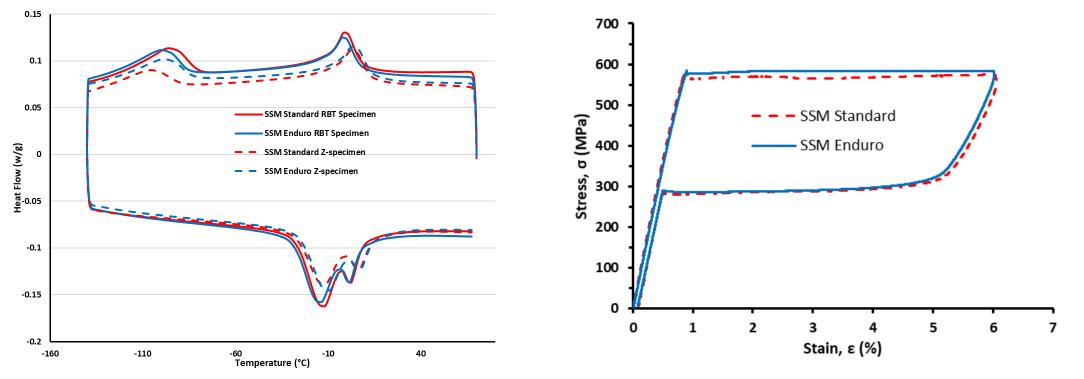

	Ingot Inclusion Analysis		
	MAX. Length (μm)	MAX. Area (%)	
SSM Standard	16.0 – 17.53	0.56-0.94	
SSM Enduro	8.05	0.27	

Element	SSM Standard Value [wt.%]	SSM Enduro Value [wt.%]	ASTM F2063-18 Requirement [wt.%]
Ni	55.86 - 56.05	56.02	54.5 to 57.0
С	0.0313	0.0258	0.040 MAX.
Со	0.0001	0.0001	0.050 MAX.
Cu	0.0007	0.0001	0.010 MAX.
Cr	0.0031	0.0017	0.010 MAX.
н	< 0.0050	<0.0050	0.005 MAX.
Fe	0.013	0.009	0.050 MAX.
Nb	0.0001	0.0001	0.025 MAX.
Ν	0.0014	0.0012	0.005 MAX.
0	0.028	0.022	0.040 MAX.
Ti	Balance	Balance	Balance

Wire Microstructure

Average Grain Size

SSM Std.		SSM Enduro		
Longitudinal Transverse		Longitudinal	Transverse	
[µm]	[µm]	[µm]	[µm]	
3.32 ± 0.70	1.46±0.26	3.52±0.71	1.55±0.42	


- Grain size verified to be similar between materials in both longitudinal and transverse directions
- Larger inclusions found in standard material lead to more voids and longer stringers in the drawn wire microstructure

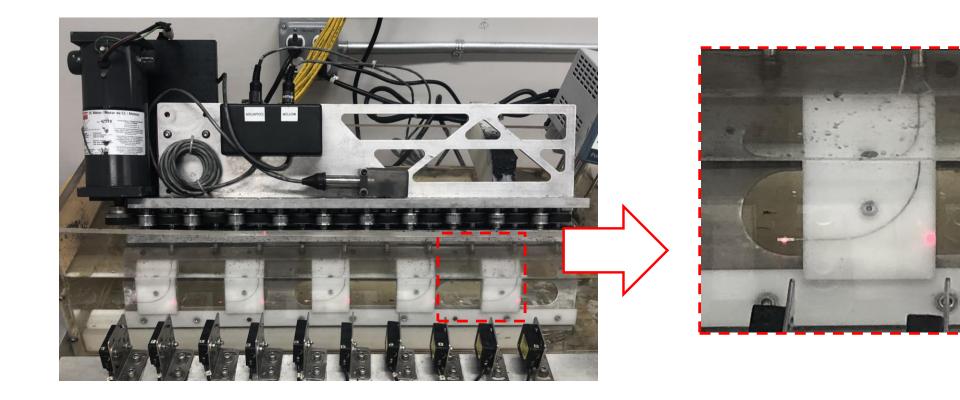
Thermomechanical Properties

- ✤ DSC performed per ASTM F2004-17 on non-annealed samples (i.e. final specimen conditions)
- ✤ Tensile Testing per ASTM F2516-18 performed at 37°C

Material Property Summary

- ✤ Included Active Af results obtained from BFR for RBT specimen here (ASTM F2082-16)
- Extremely consistent thermomechanical properties realized when comparing samples produced from standard and Enduro ingots

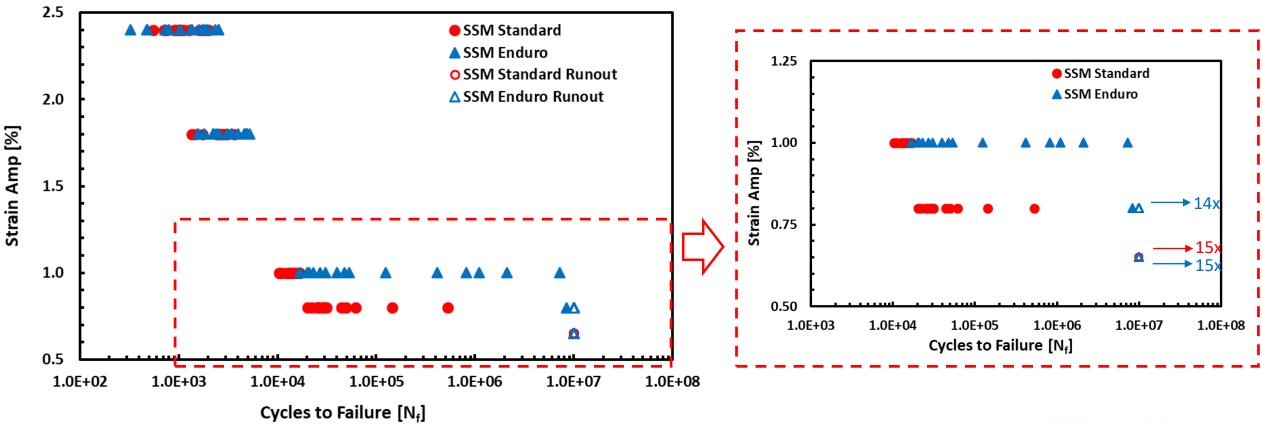
	Specimen Type	DSC, Af (°C)	BFR, Active Af (°C)	UPS (MPa)	LPS (MPa)	UTS (MPa)
SCM Stondard	RBT Specimen	8.81	3	565	288	1300
SSM Standard	Z-Specimen	15.3	-	-	-	-
SSM Enduro	RBT Specimen	10.01	4	583	288	1350
	Z-Specimen	14.97	-	-	-	-



Rotating Beam Testing (RBT)

In-house Testing per ASTM E2948-16a

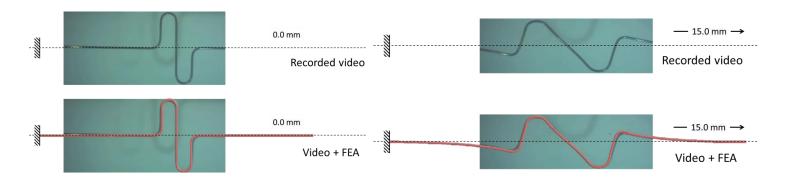
- **+** Test Conditions → Mean strain = 0%, 1000 RPM, Strains = 2.4, 1.8, 1.0, 0.8 & 0.65 %, Temp. = 37°C
- Sample size, n=15
- ✤ Guided style rotating beam test setup with laser counter break detection

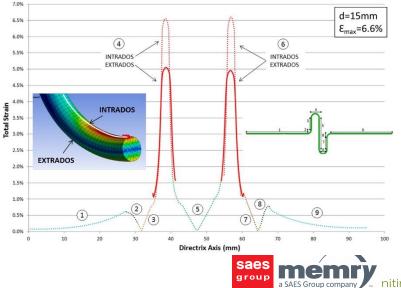


Rotating Beam Testing (RBT)

Results

+ Enduro showing a significant improvement in high cycle fatigue

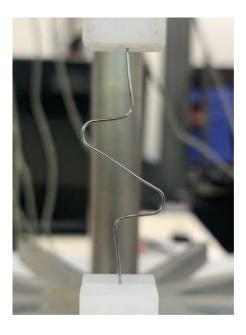


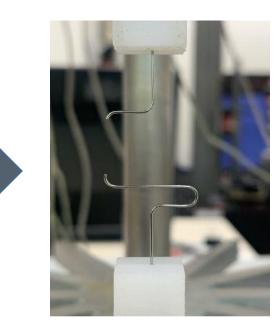

Z-specimen test designed to simulate z-stent application

- **+ Background** \rightarrow Specimen developed by K. Pike et al. 2010 and a similar study performed by
 - M. Launey et al. using the z-specimen in 2014

FEA Analysis

- Non-linear FEA analysis used to identify maximum strains
- Model created using material properties as inputs and validated using load displacement
 curves obtained from pull testing of z-specimen

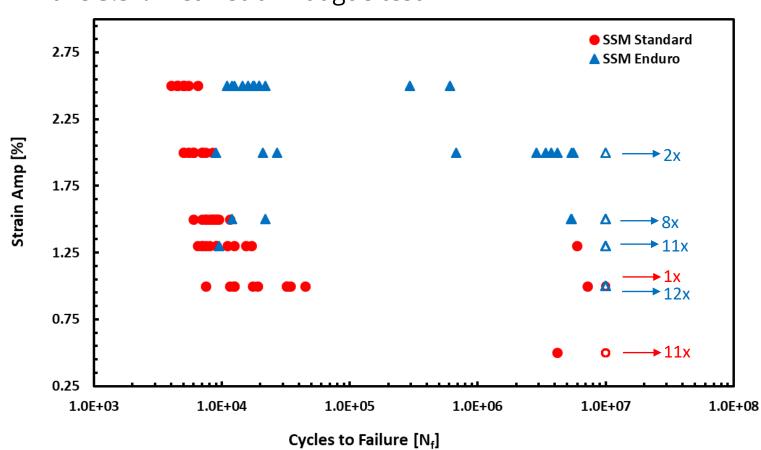


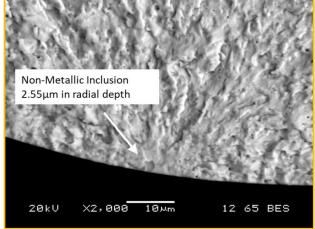




Experimental - Outsourced Testing

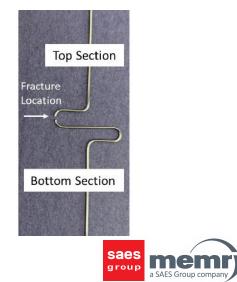
- + Equipment \rightarrow 12-station BOSE ElectroForce Model 3330 multi-specimen fatigue tester
- **➡** Bath conditions → 37°C, PBS solution
- + Frequency \rightarrow 20 30 Hz for high to low strain amplitude conditions respectively
- **◆ Strains** → Mean = 3.5%, Amplitudes = 2.5, 2.0, 1.5, 1.3, 1.0, and 0.5 %
- n=12 samples





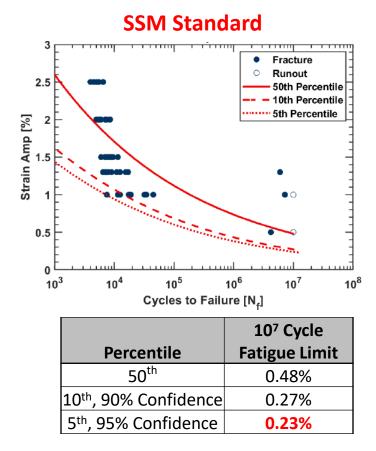
Results

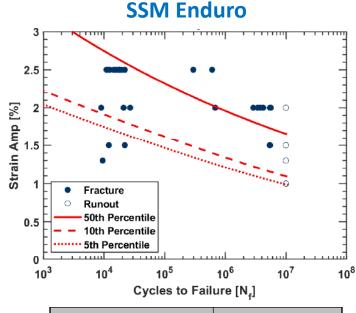
 Enduro out performed the standard material at all strain conditions in this 3.5% mean strain fatigue test



All samples failed at apex. as

expected




nitinol 📥

Fatigue Limit at 10⁷ Cycles

 4.2x improvement in fatigue limit at 10⁷ cycles calculated using Lognormal regression fit with 95% confidence

	10 ⁷ Cycle	
Percentile	Fatigue Limit	
50 th	1.65%	
10 th , 90% Confidence	1.09%	
5 th , 95% Confidence	0.98%	

Summary

- Consistent Nitinol thermomechanical properties are achieved using both SSM standard and Enduro wrought materials without any changes required to downstream processes
- Greatly improved fatigue performance was demonstrated in both RBT and Z-specimen fatigue testing when using the Enduro Nitinol material due to smaller non-metallic inclusion size and lower inclusion density

